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Abstract. We present a microscopic, analytical theory describing a confiviedectron gas

in two dimensions subject to an external magnetic field. The number of elec¥oaad
strength of the electron—electron interaction can be arbitrarily large, and all Landau levels are
included implicitly. For any value of the magnetic fieRl the correlatedv-electron states are
determined by the solution to a universal effective problem which resembles that of a fictitious
particle moving in a multi-dimensional space, without a magnetic field, occupied by potential
minima corresponding to the classicsilelectron equilibrium configurations. Introducing the
requirement of total wavefunction antisymmetry selects out the allowed minimum-energy
electron states. It is shown that low-energy minima can exist at filling fastetsp/(2n + 1)
where p andn are any positive integers. These filling factors correspond to the experimentally
observed fractional (FQHE) and integer (IQHE) quantum Hall effects. The energy gaps
calculated analytically ab = p/3 are found to be consistent with experimental data as a
function of magnetic field, over a range of samples.

1. Introduction

The problem of a highly correlated, two-dimensional electron gas in an external magnetic
field has attracted much attention in the past decade. Of particular interest is the microscopic
origin of the observed fractions in the fractional quantum Hall effect (FQHE) [1-3]. In
the past few years, it has also been appreciated that many-body effects play a role in
the formation of the gaps giving rise to the integer quantum Hall effect (IQHE). As a
complement to the experimental work on this subject, there have been many theoretical
models proposed for both the FQHE and the IQHE. These range from field-theoretical
treatments through to numerical, finite-si2é £ 6) calculations. One of the most successful
theoretical developments has been the proposal of trial wavefunctions by Laughlin and
others [1, 3-5] to describe the interplay of wavefunction antisymmetry and electron—
electron repulsion that effectively allows electrons in the lowest Landau level to form
a highly correlated electron liquid. A related development by Jain [6] considers the
construction of ‘composite’ fermions by attaching flux tubes to each electron—recent
work on Chern—Simons field theories provides some support for such composite-fermion
construction schemes [3, 7]. The general problem of describingvaiectron gas in

an external magnetic field has recently taken on additional importance in semiconductor
physics due to the fabrication of quantum dots containing a finite number of electrons [8—
10]. It is interesting to note that although the FQHE was originally observed in infinite
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two-dimensional electron gases (2DEG), it even persists in quantum dots containing a large
but finite numberN of electrons [11].

Given the fact that the underlying, microscog¥celectron Hamiltonian is known, one
could ask whether there exists an alternative, more direct way of understanding the nature
of highly correlated electron stategithout recourse to composite-fermion constructions,
effective-field theories, restrictions to lowest Landau levels, and/or small numbers of
electrons. The obvious stumbling blocks are that the electron—electron repulsion and the
cyclotron energy are typically comparable in magnitude, and Mha&iectron Schidinger
equations are generally intractable analytically.

In this paper we pursue such an alternative approach, starting witlv-atectron
Schibdinger equation. We develop a microscopic, analytical theory describing correlated
states of a confine@v-electron gas in two dimensions subject to an external magnetic
field B. The number of electron& and the strength of the electron—electron interaction
can be arbitrarily large, and all Landau levels are included implicitly. We show that the
description ofN-electron correlated states at finereduces to a universal effective problem
which resembles that of a fictitious particle moving in a multi-dimensional space occupied
by potential minima corresponding to the classigaklectron equilibrium configurations.
Introducing the requirement oN-electron wavefunction antisymmetry selects out the
allowed minimum-energyV-electron states. A possible connection with the FQHE and
IQHE is then proposed. In particular, it is argued that low-energy minima can form at
particular angular momenta corresponding to filling factoes p/(2n + 1) wherep andn
are any integers. These filling factors correspond to those observed experimentally for the
FQHE and IQHE.

The present theory suggests the following possible physical interpretation of FQHE and
IQHE states. Consider axi-electron wavefunction localized around a Wigner crystal (WX)
configuration with total relative angular momentum At particular values of/, N-electron
wavefunctions localized around nearby defect configurations (i.e. WX plus defect which we
shall denote as WXD) can coexist; we note that the allowed valueg sfich thatN-
electron states can coexist around WX and WXD simultaneously are severely restricted by
the requirement of total wavefunction antisymmetry. At these commwoalues, which we
shall denote ag = J,,, hybridization of thev-electron states centred on the WX and WXD
minima can occur. This hybridization effectively allows the electrons in the WX solid to
diffuse throughout the system via WXD defect states. The resulting delocalized ‘liquid’-
like N-electron state has a lower zero-point energy—a gap therefore opens up between
the liquid-like states at/ = J,, and other states at # J,. For largeN, the resulting
liquid-like ground-states at = J,, have filling factors given by the well-known formula [3]
v=N(N —1)/2J,. We find that the-values at which these gaps arise are identical to those
observed experimentally in the FQHE and IQHEhe energy gaps calculated analytically
atv = p/3 are found to be consistent with experimental data obtained from a range of
samples. Various other known features of FQHE states can also be reproduced.

The model avoids discussion of one-electron properties such as Landau levels, and
therefore offers the possibility of a unified description of both the FQHE and IQHE based
on a microscopiaV-electron Schivdinger equation. The formalism in this paper builds on
an earlier model presented by us in reference [12]. In particular, we conjectured in reference
[12] that the classical minimum-energy configurations play a crucial role in deciding the
symmetry-allowedV-electron correlated states in few-electron quantum dots. It was pointed
out that the classical minimum-energy configurationsNox 6 all consist ofN particles on
aring, while forN = 6, additional minima occur [13, 14]. Curiously, itis precisely\at= 6
that the magic-numbey-sequence oAJ = N is broken. This idea was independently
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pursued by Maksym in a fascinating way [15] fof < 6—the classical Eckardt frame

was employed to study correlated few-electron dynamics and, in particular, the possible
existence of ‘liquid’-like states. We note that the term ‘liquid’-like was introduced by
Maksym to describe the loss of symmetry occurring when states corresponding to different
classical minima are allowed to mix. This terminology will also be used in the present
paper. We wish to emphasize that the model presented here is qualitatively different from
an earlier theoretical approach of Kivelsehal [16] based on the so-called cooperative
ring exchange. In short, we are suggesting here that FQHE states are the liquid-like states
resulting from the hybridization oi-electron wavefunctions localized around both crystal
(WX) and crystal-plus-defect configurations (WXD).

The outline of the paper is as follows. In section 2 we present the micros@oépic
electron Schidinger equation. The hyperangular coordinate system is introduced for the
relative-motion Hamiltonian. The problem then reduces tava—24 hyperangular equation
(section 2.1). In section 2.2 the specific caseVo& 3 is outlined. This was discussed in
detail in reference [12], and is reviewed here since it is useful for visualizing/teéectron
results. In section 2.3 a simplified hyperangular equation is obtained which is valid in the
regime of strong electron—electron interactions and for la¥geThe characteristics of the
lowest-energy solutions are discussed. Section 3 addresses the requirenveateatron
wavefunction antisymmetry. Permutation symmetries of Meelectron wavefunction
become space-group operations in the multi-dimensional hyperangular configuration space.
The states which will become ground states separated by a finite energy gap are found to
correspond to filling fractions observed in the FQHE. Section 4 obtains analytic estimates
for the FQHE gaps at the fractions/3 as an example. These estimates are found to be
consistent with experimental data over a range of samples, despite the fact that the results
emerge from a simple one-dimensional, particle-in-a-box equation. Section 5 summarizes
the results.

2. The microscopic N -electron Hamiltonian

The analytical tractability of our model is achieved via a combination of a parabolic
confinement potential and an inverse-square electron—electron repulsion potential. The
parabolic confinement is known to be a reasonable approximation for many semiconductor
guantum dot samples [17]. For the case of a heterostructure (i.e. a 2DEG) it mimics the
effect of a positive background, yielding an approximately uniform electron density in the
largeN limit (see reference [14]). Th@/r? electron—electron interactiorg (> 0) is not
unrealistic in quantum dots due to the presence of image charges in neighbouring electrodes.
Recent theoretical work suggests [18] that the true repulsive interaction between electrons
in a quantum dot is more likely to be proportional tor1 with n ~ 3 at larger andn ~ 1
at smallr. In heterostructures, the electron—electron interaction is probably less affected
by image-charge effects. However, the general features of our results, which are based on
the assumption that = 2 for all r, should still be qualitatively useful. In particular, the
occurrence of the FQHE in two-dimensional electron gases is not thought to depend crucially
on the precise form of the electron—electron repulsion. Recent quantitative comparisons
[17, 19, 20] have indeed shown that th¢r4 and Y r repulsive interactions yieldv-
electron energy spectra with very similar features. Of particular relevance to the present
theory is the finding that thelassicalminimum-energy configurations fa¥ electrons in a
two-dimensional parabolic confinement potential seem to be very similar/foaid 1/r?
interactions [21].

The exact Sclirdinger equation forN electrons with a repulsive interactiofy/r?,
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N=3

Figure 1. Jacobi coordinates for th& = 3 electron system. Reading clockwise, the classical
configuration for three repulsive particle®, = (132 corresponds tdw, 6) = (7/4,7/2)
(i.e. (x,y) = (0, 0); the other classical configuratioR; = (123 corresponds tda, ) =
(m/4, —7/2) (i.e. (x, y) = (0, =) or, equivalently,(0, —7)).

moving in a 2D parabolic potential subject to a magnetic figlsymmetric gauge) along
the z-axis, is given by(Hspace+ Hspin ¥ = EV;

N
(pi —eA;/c)?
Hspace= Z(Z}/n* + m a)0|rl + Z |’I°l _ T'J|2

i=1 i<j
B
_Z( 2 +21>+Z|rl—ry|2 1)

i<j

wherew3(B) = wi + w?/4, w. is the cyclotron frequency, anHspin = —g*upB Y ; si .-

The momentum and position of tlith particle are given by 2D vectogs andr; respect-
ively; I; is thez-component of the angular momentum. The exact eigenstates are written in
terms of products of spatial and spin eigenstates obtained Hgmeand Hspin respectively.

The eigenstates offspin are just products of the spinors of the individual electrons, and
have energyEsyin = g*upBS;, wheresS, is thez-component of the total spin, and is the
electron effectiveg-factor. We employ standard Jacobi coordinaks(j = 1,2,..., N)
where X; = (1/N) Zj r; (centre-of-mass coordinate), atXj;.., (relative coordinates) is

given by
j—17%? 1
X =|— T — -
s MR

together with the conjugate momeni3 (see figure 1 forN = 3). The centre-of-mass
motion decouplesHspace = Hem(X1) + Hrel({Xj-1}), and henceEspace = Ecm + Erel.
The exact eigenstates dicy and energiesEcy are well known [23]. The non-trivial
problem is that of solving the relative-motion equatifiy = Ey. We transform the
relative coordinate$.X;. 1} to standard hyperspherical coordinates:

N
X; = r( I1 cos(x,-) sina; e’

i=j¥1

(ri+mro+---+ le):| (2

with r > 0 and 0< «; < 7/2 (@2 = 7/2). Physically, the hyperradius is just the
root mean square electron—electron separation. The exact eigenstétgshafve the form
Yrel = R(r) F(2) whereQ2 denotes the ® —3 hyperangulafé; «} variables;R(r) and F (2)
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are solutions of the hyperradial and hyperangular equations respectively. The hyperradial
equation is given by

d® 2N -3d y(y+2N-4) r?> 2m*(Ee—hJw./2)

Bl _ _ - R(r)=0 3
I:dr2 r dr r2 I3 + R j| ") ®)
wherelg = h(m*wo(B))~%, and J is the totalrelative angular momentum. The parameter
y > 0 and is related to the eigenvalue of the and wg-independent hyperangular equation
(see section 2.1). Equation (3) can be solved exactly yielding

hw,

2

Eei=hooB)2n+y + N —-1]+J 4)

wheren is any positive integer or zero, and

r 14 I"2 2 /972
R(F) — |::| LZ+N2<2)er /2[0. (5)
lo 12

Equation (4) provides an exact and infinite set of relative breathing-mode excitations

2hwo(B) An for any N regardless of particle statistics and/or spin states. These quantum

breathing modes were first reported in reference [12], and later confirmed by Geller and
Vignale [24]; the classical version of these modes for the Coulomb interaction was discussed
in detail by Schweigert and Peeters [25].

1

€2

1
Qo
SEM) ®  (sp
L P
(SI'M) (SiM) Qo;a
\
1
QO;’ Qo;z
Q‘
1
(SIM) (SEM) ® (SIM)
v‘ * Q’
Q  sm 13
11 *
QV

1:2

Figure 2. A schematic diagram showing a portion of the hyperang@rspace. Two
symmetrically equivalent minima (SEMs—labelled@§) are indicated by larger circles, while
nearby symmetrically inequivalent minima (SIMs—labelled<gs,) are indicated by smaller
circles.

2.1. The exact hyperangular equation for any

It remains to solve thé3- and wp-independent hyperangular equation, which is given by

2m* B
[®12v + 772 V(Q)]F(Q) =[y(y +2N - H]F(Q) (6)
where
2 [2N —6— (2N —4)cos2xy] 9 92
2 __ 2
03 =—@+ sinZey MJrse@aN@N,l—cose@aN@.

@)
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The quantityV(®2) is given byr?3", _; |r —r;/7%, and only depends on hyperangular
coordinates2 = {0; «}. We emphasize that this hyperangular equation (equation (6)) is
universal in that it is independent of the values of the magnetic field or confinement: solving
equation (6) fory, and hence using equation (4), yields the complete solutions oithe
electron Hamiltoniar for all magnetic fields and confinement strengths. Unfortunately the
hyperangular equation does not admit exact solutiong foBections 2.2—2.4 will consider
various approximations to equation (6) which make the problem tractable. Bedause
remains a good quantum number, we can introduce a Jacobi transformation of the relative-
motion angleq#;}: in particular,

1 N
0'=——>% 6 8)
N—-14%&
j=2
and
. 1/2
j—2 1
Grn=|"—= 9 — —— (Go4 O3t -0 9
] |:j—1:| |:_, j_2(2+ 3+ +,1)i| 9)

wherej = 3,4,..., N. We hence have ong-variable, (N — 2) 6j;-variables,(N — 2)
a-variables, and one hyperradiusgiving a total of 2v — 2 variables as required for the
relative motion. The exact eigenstates /3, have the formy = €’ R(r)G(Q') where
Q' denotes the2N — 4) {6},1; «;} variables excluding’. The termV () is independent
of 6 and will hence be written a¥ (2’). It is useful to rewrite the eigenvalue of the
hyperangular equation in terms of a new variablas follows:

2 2m*g
6=8[V(V+2N—4)—J2— 2 V(Qo)] (10)

whereV (€2;) is the value ofV (') evaluated at the hyperangles corresponding to a particular

classical, minimum-energy-electron configuration (a Wigner molecule). Permuting

electron indices will provide a s¢f2;} of symmetrically equivalent minim@EMSs) [22, 15]

with the same potential energy () = V(Qy) for all i (e.g. Q; and 27 shown

schematically in figure 2). Such SEMs have the same topological structure, but cannot

be transformed into each other by rotations [22, 15]. As will be shown in section 2.2,

there are two such SEMs fav¥ = 3. The quantitye in equation (10) accounts for the

contribution to the eigenvalue of the hyperangular equatighout including either the

contributions from the rigid-body rotational enerdy or the electrostatic potential energy

(Zm*ﬁ/ﬁz)\/(%) of the classical minimum-energy configuration. Physically therefere,

contains the zero-point energy & space associated with the quantum mechanical spread

of G(2') about the minimg2;}. The actual spread i (") and hence will depend on

the total wavefunction antisymmetry requirement. This is illustratedMoe 3 in section

2.2, and discussed for larg¥€ in sections 2.3, 2.4 and 3. In general,> 0, ¢ ~ g#

where . < 1, ande ~ J® wheres < 2; these statements will be illustrated in section

2.2 for N = 3. It is straightforward to show that the ter(ﬁm*ﬁ/EZ)V(Qb) appearing in

the definition ofe is identical to [uasy/hwo(B)]%, Where Vyass is the potential energy of

the classical, minimum-energy-electron configuration, thereby recovering the expression

given in reference [12]. Note thafassoc BY%wo(B), and thate (like y) is independent of

B andwg. The exact relative energy for any can now be written as
_ Zm*,B 1/2

Erel = hwo(B)[Zn + ([N — 2P+ 77+ 2 V() + 712) + 1} +J

hw,
5
E\e only depends on particle statistics throughAs 7 — 0, ¢ — 0 andEre; — Vijass

(11)
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The exactE-expression has an important consequence. Jiuependence of is
weaker tharv? asJ — 0. Hence the terndhw, /2 in Ee will dominate theJ-dependence
of Ee for small J at fixed magnetic fieldo.. For states with/ < 0, E will hence
initially decrease a$/| increases. On the other hand at large negalivé& e will tend to
h(wo(B) — w./2)|J|, and hence will increase linearly witlf| at a givenw,. This implies
that E,) has aminimumat a finite negative/ for a given fixed magnetic field,.. This
is the basic mechanism behind the tendency ofVaalectron gas to form ground states at
increasingly large/-values as the magnetic field is increased. As will be shown in section
2.2 for N = 3 electrons, and in section 3 for largé, only a subset of thesé¢-minima
are permitted under the requirement of total wavefunction antisymmetry. Theséues
are often called ‘magic-number-values in the context of few-electron quantum dots. In
section 3 we will show that the analogous ‘magic-numhbestates for a large¥ electron
gas constitute FQHE and IQHE states. We emphasize that so far our results are exact for
any electron numbeN, electron—electron interaction strength magnetic fieldw., and

parabolic confinementy.
ol ¥
T(o, ™)

iy
e

(0, -1

Figure 3. A contour plot of the fictitious potential (x, y; €) in the (x, y) plane for theN =3
electron problem. The two symmetrically equivalent minima (SEN&-and<2] from figure 1)

are shown. Minima iV (x, y; €) occur at(0, 0) and(0, ) (i.e. at the classical configurations).
Maxima occur at(In+/3, +7/2), where V (x, y; €) — oo (i.e. electrons 2 and 3 or 1 and 3
coincident). V(x, y; €) is positive and finite everywhere else. The same qualitative features
appear for alk (e/m*B =5 is used as an illustration).

2.2. The specific case of = 3

This case was studied in reference [12]. Here we will summarize the results since they are
important for understanding the genendlease. For convenience we change variables from

a, 6 (cf. figure 1) tox, y wherex = In[tan(z/2—«a)] andy =6 — 7 /2. Since 0K o < 7/2,
then—oo < x < 00 (NB: — < y < ). We definep, = (2/i)3/dx and p, = (h/i)3/dy.
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The exact hyperangular equation (equation (6)) now takes the form

p?  (py +hJcogtarrter)/2)?
2 2

where

+ Vix,y; 6)]G(x,y)=€G(x,y) (12)

1
(2 + cog2tarmle) 3 eante
(cose¢2tamle) + cot(tamler))2 — 3sify 4

Vix,y; €)= m*ﬂ[

+ 1 cotante’) + < cof(2tant e‘)]. (13)
2 m*f

Equation (12) represents the single-body Hamiltonian for a fictitious particle of eaengy
unit mass, moving in they-plane in a non-linear (i.es-dependent) potentid (x, y; €),
subject to a fictitious, non-uniform magnetic field in thelirection:

Biic = %C [1 — cog4(tan? e"))] (14)

Bjic is independent ofB and has a maximum ok|J|c/2e¢ at x = O for all y. For
small x, Bi. ~ (hJc/2e)(1 — x?). As x — +oo, Bic — 0. Note we have here
chosen to highlight the Scbdinger-like form of equation (12); a simple rearrangement
of equation (12) shows it to be hermitian with a weighting functiorf @mante*). These
results are exact so far. Figure 3 shows the poteritigl, y; ¢) in the (x, y) plane.
V(x,y;e) > 0 everywhere. Minima occur &0, 0) and (0, &) where V(x, y;¢) = 0
(NB (0, ) is equivalent to(0, —)). Maxima occur at(n+/3, £7/2) in figure 3, where
V(x,y;€) —> oo. Sincee > 0, these statements hold for amy We now discuss the
physical significance of these features. The classical configurations of minimum energy (the
Wigner molecule) correspond to the particles lying on a ring in the form of an equilateral
triangle with Vgass = wo(B)[6m*B]Y2. There are two distinct configurations, i.e. two
distinct symmetrically equivalent minima [22], with clockwise orderirgs = (132 and
Q) = (123 corresponding tde, 6) = (r/4, £7/2). In (x, y) coordinates, these correspond
to (0,0) and (0, =) (equivalently, (0, —x)). Hence the classical configurations coincide
with the minima inV (x, y; €¢) in figure 3 and the maximum iBs.. As pointed out in
reference [12], the formation of a Wigner molecule should therefore be favoured by both
large Bsic (i.e. large|J|) and deepV (x, y; €) minima (i.e. larges, strong electron—electron
interactions).

Consider the limit of very strong electron—electron interactions fl.e> o0). Since
the height of the tunnel barrier between the tWax, y; ¢) minima is ~8, the fictitious
particle sits at one of these minima and the system is locked in one of the two classical
configurations, e.g2, = (132 at (0, 0). The probability of tunnelling between the minima
Qg and ] is zero. Tunnelling between the two minima implies a mixture of configuration
(123) into (132), and hence interchange of the original electrons; in many-body language,
exchange effects arising from wavefunction antisymmetry are therefore negligibls.
small compared ta:*8, and equation (12) reduces to

_ em*p\ 2 Fiw,
Ere|=h0)0(B)|:2n+<l+ J?+ Ef) —|—1:|+J 5 (15)
The energyEe > Vqass Since it includes the hyperradial zero-point energy (NB> 0
yields Ere) — Vgjassand Bic — 0).
Next consider large but finitg. The fictitious particle now moves in the vicinity of
the minimume; (i.e. (x, y) ~ (0,0)). The electrons in the Wigner solid are effectively
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vibrating around their classical positions. On expanding the poténtial y; ¢) about(0, 0)
to third order, the exact equation (12) becomes

2 —hJx/2? 1 1
[sz + w + éa)fxz + Zwiyz}G(x, y) =€G(x,y) (16)
where w? = 3m*B/4 + 2¢ and w? = 3m*B/4. This has the form of a single electron
moving in an anisotropic parabolic potential, subject to a uniform magnetic Bgld=
hJc/2e. Equation (16) is exactly solvable ferusing a symmetric gauge [19] (the energies
are independent of the choice of gauge Bik). As an illustration, we consider smad|
and hencev, ~ w,. The relative energy is then given by

- 6m*
Ero = ha)o(B)<2n + [1 Ny "}_Zzﬂ +2020 + 1] + 1)

,  12m*B 1/2 / 1/2 f,
x(J+ = ) +211} +l>+J2. (17)
The fictitious particle has its own set of Fock—Darwin (and hence Landau) levels [23]
labelled byr’ and a fictitious angular momentuth For largeg and smalln’,!’, and J,
equation (17) yields an oscillator excitation spectrum with two characteristic frequencies
V2hwo(B) and Ziwg(B) representing shear and breathing modes of the Wigner molecule.
For smallerg (i.e. weaker interactions) and/or large(i.e. excited states), the tunnelling
probability between th& (x, y; €) minima Qg and2] in figure 3 becomes significant. The
Wigner molecule begins to melt, and wavefunction antisymmetry must be included. This
is discussed further in section 3. As mentioned in reference [12], the resulting analytically
obtained magic-numbef-transitions are found to be in good agreement with the numerical
results for ¥r interaction. We note that the analytic results become more accurate in the
Wigner solid regime (e.g. largg or |J|), while the numerical calculations become more
computationally demanding.

2.3. Simplified hyperangular equations for arbitrarily largée

For generalv, the hyperangular equation (equation (6)j2&’ — 4)-dimensional. However,
in the Wigner solid regime (largg or |J|), the classical minimum-energy configurations
will still be important in determinings and henceEy, just as forN = 3. Here we will
consider the limit in which the number of electrons is largé ¥ 1). This is the limit
of interest in the FQHE and in large quantum dots. Specifically, we will introduce in this
section a series of approximations in order to simplify the exact hyperangular equation.
At each stage, the corresponding simplified hyperangular equation is explicitly given.
The resulting discussion is detailed—however, we feel that this is necessary in order to
justify the successively simpler (and more approximate) hyperangular equations. Each of
these simplified hyperangular equations can be solved numerically; the complexity of the
algorithms needed obviously decreases as more approximations are introduced. However,
the goal in this paper is to obtain a simplified version of the hyperangular equation which
can be treated analytically, but which is still based on a set of reasonable approximations.
Figure 4 shows the classical ground-state configurationMoe 230 electrons (black
dots) in a parabolic quantum dot, as obtained by Bedanov and Peeters using a Monte Carlo
algorithm [14]. The rings are drawn as a guide to the eye. The nuNbef electrons is
relatively small in the context of th¥ — oo limit, and hence the details of the ground-state
configuration, particularly for larger rings, will be prone to edge effects. However, the inner
rings show a nearly hexagonal lattice as expected forMhe oo limit. For the purposes
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Figure 4. The ground-state classical configuration for 230 electrons (black dots) calculated
numerically using a Monte Carlo simulation. This figure was adapted from figure 2 of Bedanov
and Peeters (reference [14]). Straight lines are drawn to bisect the midpoint between nearest-
neighbour electrons, thereby highlighting the approximately hexagonal local symmetry. Circles
are drawn to illustrate the approximately ring-like arrangement of electrons. The inner circles
only pass through regular hexagons. The outer circle passes through several pentagons and
distorted hexagons because of its proximity to the edge of the finite cluster.

j+2

m increases

N2 — —

j decreases

N-3

Figure 5. A particular symmetrically equivalent minimum (SEM—Iabelled in the textz3
with N near the centre (cf. figure 4). We are considering the limit of la¥geRing m is such
that N > j > 1, and it is therefore far away from the circumference of the cluster.

of illustration we will therefore consider figure 4 as being representative oithe oo
classical configuration. Consider tiparticular classical configuratior2; where theNth
electron is near the centre and the first electron is on the circumference of the droplet. This
is shown schematically in figure 5. As discussed in section 2.%/fer 3, the fully quantum
mechanical system will also lie near this configuratiof2ihspace in the limit of very large
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B. The jth Jacobi coordinate is given by

g2
X; = [JJ} (rj — Rj_1) (18)

where
R; 1= - !
j—1
(this quantityR;_1 can be thought of as the ‘centre of mass’ of the electro@s.1., j — 1).
For j > 1, and for configurations like those in figures 4 and 5 where the electrons are
evenly distributed around the origin, the quanti;_, will be small compared to the
typical electron lattice spacing. In addition, the prefactor  1)/j]%? — 1 for large
j. HenceX; — r; for large j. However, there is an exact identity for hyperangular
Jacobi coordinateszj’y:z[xj/r]2 = 1. Given thatX; — 0 asj — N for large N, this
implies that each termX[j/r]2 « 1 for large j. Given the definition of the hyperangular
coordinates stated earlier on, it follows that the hyperangles< 1 for j > 1. Hence
to first order in«;, we can make the approximatioXiy = rsinay ~ ray. Similarly
Xy_1 = rcosay Sinay_1 ~ ray_1, and, more generallyX; ~ ra;. To summarize, for
configurations similar to that shown in figure 5, we have the approximate sut ro; €’
inthe N > 1 and;j > 1 limit. There are two points to note: although we need both 1
andN > 1, j can still be an order of magnitude less thén Second, the error introduced by
assuming sie; ~ «; is still reasonably small even fgr= 2 (recall thatw, = 7/2 ~ 1.57,
as compared to sim, = 1. To remain consistent within our approximation, we will take
oy = 1 instead ofr/2 in what follows).
This approximate form forX; leads to an interesting simplification of the exact
hyperangular equation. The small-angle (kg 1) limit of equation (6) yields

(re+mro+---+7j_1)

N 72 ) 72
[Z_Zm*vj +/3V(Q)}F(Q)= oV (7 F2N —HF () (19)
j=2 "
where
2 19 1 92
V= T0a? e o202 20
(xj O{] Ol., Oéj i

is the two-dimensional Laplacian for a fictitious particle with positien, 6;) in polar
coordinates, the potential energy term

V(Q) = V(Q) ~ Z ot €% — ;€2 (21)
i<

andF(Q) = €’ G(Q'). This equation is a good approximation for> N with N > 1, but
becomes worse ag— 0 and/orN — 0. (Recall thatx, = 1, and hence the sum can start
from j = 2 as shown.) However, this is sufficient for the purposes of this paper, since we are
interested in states that evolve within the bulk of ftieelectron droplet as opposed to those
at the edge. Physically, equation (19) describes a st ef 1 fictitious particles moving
on a two-dimensional plane subject to a two-body inverse-square interaction,ahdbéece
of a magnetic field. It is interesting to note that this transformation of having replaced an
N-particle problem in a magnetic field with & — 1)-particle problem without a magnetic
field seems reminiscent of composite-fermion constructions at half-integer filling fractions.
The effective Schidinger equation in equation (19) carries the following constraint: the
exact hyperangular identitzj’y:z[xj/r]2 = 1 implies that)_ ajz ~ 1. This may complicate
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any attempt at a solution using a ‘renormalization’ type of approach, such as the setting up
of a recursion equation relating for N particles toy for N — 1 patrticles.

It is more useful to view equation (19) in the context of a single fictitious particle
moving in a multi-dimensional space containing potential minima corresponding to the
various classical minimum-energy configuratigfs}. This directly connects th&¥-electron
problem to theN = 3 problem discussed in section 2.2. As discussed in section 2.1, a
Jacobi transformation can be undertaken on{thg variables. In particular,

j—27v?
o) = L_l] 6 — ©-1) (22)
wherej =3,4,..., N and
1
O;_1= jfz(é)z +63+ -+ 6;_1).

The quantity®;_; represents the average of the anglgsvherej =2,3,...,j — 1. For
j > 1, the quantity®;_, will be approximately a constan®, since thej — 1 particles
are evenly distributed about the origin in a giveh configuration (recall figures 4 and 5).
In addition, the prefactor(fj — 2)/(j — 1)]%2 — 1 for large j. Henced;; — 6, — © for
large j, neglecting terms of ordefl/N). With F(Q) = €9 G('), equation (19) further
reduces to

ﬁ: h? 32+1 K N R 2 4 v e
— 2m*\0a?  «jdo; o?l36; N-—-1

Jj=3

_ " (y + 2N — HG(Q) (23)
= oV :
Again this equation is a good approximation for— N, but becomes worse as— 0.
The {6;,); ;} manifold carries the following constraintsy"a? ~ 1 and )~ 3/a6};; ~ O.
The latter condition is an approximate identity for lar§ye and is obtained by combining

3 9
30, 0’
(this is an exact property of any Jacobi transformation) and
d 9 1 9

-~

06, a0, N 100"

This new condition hence reflects the fact that the total relative angular momentum is only
associated with thé’-variable; there is no additional contribution to the relative angular
momentum contained within th@" dynamics. These approximate constraints allow us to
make a further simplification of the hyperangular equation as follows. Using the approximate
identity Y~ a? ~ 1, we can define an average hyperangle- N~*/2. We will therefore
replace the term

Z 2(N 1)2

in equation (23) by
J2

2l ot
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assuming largev. We can hence rewrite equation (23) in the form

XN:— i L1t ” LA 9 + BIV(Q) — V(Q] |G(Q)
— 2m*\da? o 0a;  a?|06%, N —106 0
j= J : J [ J

0
=5
Although its derivation has involved approximations, equation (24) merits some discussion
since it elucidates several of the statements made in section 2.1. The right-hand side is just
(4/m*)e. Given that)_ otjz ~ 1 and) d/d6;; ~ 0, the J-dependence of will tend to be
weaker than/? as claimed earlier. Note that sind€ «? ~ 1, the moment of inertid of
a given classical configuration if2 space, treated as a rigid body, is just. Hence the
classical rigid-body rotational energy?J2/21 ~ h?J?/2m*, which is precisely the term
appearing in the right-hand side of equation (24). This then justifies the statement made
in section 2.1 that excludes the classical rigid-body rotational energy. The t&(f;)
denotesV (') evaluated at a given classical SEM equilibrium configuratidre= ;. We
emphasize thaV () = V(£2)), i.e. the potential energy is the same for all SEMs. Since
Qg is a minimum, the difference ternV[(Q') — V()] can be expanded arourse,. The
leading terms will be quadratic ify;; — 6,0 etc. Hence: does indeed describe the zero-
point energy associated with the spreadiifQ’) around the classical minima, as claimed
in section 2.1 and shown explicitly fav = 3 in section 2.2. This point is further discussed
below for largeN.

The hyperangular equation, equation (24), is now simpler; however, it is still not quite
in a form which makes it amenable to analytic calculation. This final step can be achieved
via the following considerations. Given the two approximate constraEtst ~ 1 and
>~ 9/96;) ~ 0, the term involving)_(1/a?)3/36;;) should be small as compared to the term
involving (1/&?)3%/867;, and hence will be neglected. Furthermore, just as\oe 3, we
are initially considering the quantum mechanical solution near a given classical minimum
Q, i-e.  — oo. Hence the term1/a?)3%/867; can be approximated byl/a%)8%/367;,
wherew;o is the value ofe; at Q' = Q. The fact thatQg is a minimum suggests that
the leading-order expansion of [Q') — V ()] will involve terms like (6;; — 6[;0))* and
(a; — ajo)? for all j, but not cross terms; this was demonstrated explicitly for= 3
earlier, whereV (x, y) was found to be a function af? andy? but notxy. This implies the
following simplification forQ" ~ €25 [V(Q') — V(20)] ~ >_;[v(e; — ejo) +w (@1 — 6 jop]
where bothv and w have a minimum a2’ = Q, i.e. ate; = «jo and6;j; = 6o;. The
approximate separability of the potential suggests that the hyperangular fuactigin can
now be written asf ({o; — ajo})g ({61 — 6},01}) where the functionsf and g are peaked
aroundQ’ = Q. This was shown to be true explicitly fo¥ = 3, wheref andg turned out
to be gaussians (harmonic oscillator wavefunctions). Sigjges still a minimum point for
large N, f andg will retain their gaussian-like character for genesal We will therefore
write

m*
[m von g 2F v<sza>]G<sz/>. (24)

({01 — oo ~ [ T &5@ — O
j
whereg; (01 — 0;;01) is a function peaked around the minimum coordir@je= 6;;q. The
hyperangular equation is now fully separable into an equation involeng

NoOR2 92 109
[Z o ( + ) + Bvj(a; — ajO)i|f({aj —ajo}) = Eo f({o; — ajo)) (25)

2" ..
= Baj a;j da;
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together with the following equations for eaéfy;:
[ R 9
o %2 2
2m (e 89[./‘]
The relation between, E,, ande; is as follows: (4/m*)e = Eg + E, whereE, = Zj ej.
The full expression for the relative energy hence becomes

+ﬁwwm—ﬁmﬂ&@m—ﬂmﬂ=@&@ﬂ—%ml (26)

_ 2m* 2m* 12 hw,
Erel=hw0(3)|:2n+ ([N_2]2+J2+EZﬂV(QE))‘i'EZ[EH“‘Ea]) ‘|’1i| +J ;)
(27)

Since equations (25) and (26) have a ®dimger-like form withE, ande; as eigenvalues
respectively, we will refer to these two quantities as ‘energies’ even though this is not
strictly correct terminology.

2.4. Characteristics of the low-energy solutiofig<2’)

So far we have considered the solutions near a particular minimum configufsfioe. we
have considered very largejust as we did initially forN = 3. Very largeg implies that
G(2") will be peaked around one of the SEMs, e.g. arodeid In the limit of zero
tunnelling between SEMSs, the soluti@i() ~ f({a; — ajo))g({0;1 — 1j01}) centred at
Q, will be degeneratewith the identically localized solutions centred at all other SEMs
{Q!}. These localized functions can be thought of as atomic-like orbitaf3’ ispace. In
particular there will be a set of orbitals associated with each SEMThe corresponding
coordinates and hyperangular equations describing these solutions are identical to those
obtained earlier in section 2.3; however, the spatial ordering of the electrons for the various
Q! minima will necessarily change; for example, electréwill not necessarily be close to
the centre. Using the usual variational argument for &dimger-like equations, the lowest-
energy (i.e. lowest, and lowestEy) solutions of equations (26) and (27) will be those
with the minimum number of nodes.

For large but finiteg, there will be a small but finite tunnelling between the various
minima {2}, and hence the complete soluti6i(22") will be more correctly described as
a linear combination of the atomic-like solutions, just like in a single-particle tight-binding
model. Furthermore, foN > 6, as noted earlier, there will be additional classical minima
which are not topologically equivalent; again borrowing from the language of molecular
physics [15, 22] these minima are term@anmetrically inequivalent minim@&IMs). These
SIMs are local minima ir2’ space which are often just slightly higher in energy than the
SEMs{Q;}. In the largeN limit, these minima correspond to defect states in a hexagonal
crystal. Fisher, Halperin and Morf [26] showed that a Wigner crystal with a localized defect
(WXD) can be quite close in energy to the perfect Wigner crystal (WX). This finding was
recently verified in the context ol electrons in a two-dimensional parabolic quantum
dot by Bolton and Rossler [13] and Bedanov and Peeters [14]. These authors all found
that the global minimum for the classical-electron system tends towards a hexagonal
crystal asN — oo, as expected for the Wigner crystal (WX). However, configurations
corresponding to a Wigner crystal with single defects (WXD) are only slightly higher in
energy. In the language of the present paper, the WX represents the SEMs while the WXD
represents the SIMs. Although the SIMs are not true global minima, the complete solution
G (") should certainly include finite mixing with them. This is particularly true since the
‘nearest neighbours’ of a given SEM ' space are SIMs. This is simply a consequence
of the fact that translation between two adjacent SEM$2inspace requires interchange
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of at least two electrons, while translation between a given SEM and its nearest SIMs
requires only slight electron distortion. Each SEM minim@nwill have p defect states

as its nearest neighbours @i space—we denote these nearby SIM minimass, } where
a=12,...,p (cf. figure 2).

The resulting wavefunctioty (€2') will therefore resemble a tight-binding LCMO (linear
combination of molecular orbitals) wavefunction, where each ‘molecule’ consists of ‘atomic’
orbitals on one of the SEM minim&; mixed with ‘atomic’ orbitals on each of its nearby
SIM minima. We emphasize thaf = 3 has no SIM minima.N = 6 is the smallestv
having SIMs. The SIMs foiv = 6 consist of a six-member ring configuration while the
SEMs contain a five-member ring plus one electron at the centre [13, 14]. For g&heral
the low-energy solutions should therefore be reasonably well described by

SEM SIM

G(Q/) ~ Z Zci;af({aj - Olji;a})g({'g[j] - 9[ji;a]})~ (28)

It is well known from elementary tight-binding theory that the lowest-energy states are
‘bonding’ wavefunctions of s orbitals. In the present context, we similarly expect the
lowest energyG () to have as few nodes as possible (i.e. it will be gaussian-like around
each of the SEM{Q2}}, thereby resembling an s orbital); it will also correspond to the
coefficientsc;., being identical for each (i.e. it will resemble a ‘bonding’ state).

3. Fermion statistics, magic numbers, and filling fractions

So far we have not introduced the requirement that the tgtalectron wavefunction be
antisymmetric. In this section, we will show that it is precisely this requirement that
produces the observed FQHE filling factors for large

It is useful to first discuss the effect of antisymmetry in the cas&/of 3 electrons
before considering larg&/. For three spin-polarized electrong, must be antisymmetric
under particle interchangé <> j. The hyperradial partR(r) is invariant; particle
permutation operations iry, 72, 73) become straightforwardpace-groupoperations in
the (x, y) plane. For small(x, y), 1 <+ 2 is equivalent to(x, y) — (x,y + 7) with
0 — 0 +m/2; 1 < 3is equivalent tax, y) — (x,y — 7) with 8/ — 0’ + /6 ((x, y)
representq(x, y) rotated by 4/3); 2 < 3 is equivalent to(x, y) — (x,y + m) with
0 — 0" — /6 ((x,y) representdx, y) rotated by—4z/3). The solutionsG(x, y) of
equation (12) with the lowest possibde and hence the lowedi at a givenw,, should
be nodeless in the vicinity of0, 0) (cf. the ground state in the parabolic potential with
n’ = 0 = [’ in equation (17)). However, the above symmetry requirements forbid such
a nodeless solution unles§ &/ = 1. Therefore the only symmetry-allowed solutions
G(x,y) which are nodeless are those whefeis a multiple of three, as observed in
numerical calculations fotv = 3 electrons with a Ar interaction. It is important to
note that this condition, i.e."&//3 = 1, just arises from combining the effect of any
two sets of particle interchangés<> j. For N = 3, two sets of particle interchanges
correspond to rotations of a given SEM; this can be seen simply as follows. Consider a
given SEM in figure 3, e.g2; = (132). Interchanging 1~ 2 and 2« 3 yields thesame
SEM, i.e. (132), rotated anticlockwise byt 23. Hence combinations of two sets of particle
interchanges merely rotate the Wigner molecule without involving a transformation from
one SEM to another, i.e. without moving from (132) to (123). Hence in order to obtain
the ‘magic’ angular momentum values fof = 3, it is sufficientto consider the subset
of particle interchanges from the; ermutation group which correspond to point-group
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rotations G, i.e. those which do not correspond to translations between SEMs. This result
is discussed by Maksym in reference [15] following earlier work on molecules by Wilson
[22]. Maksym also argued that fa¥ = 3 the remaining permutations which correspond to
translations between SEMs, and hence the effect of tunnelling between SEMSs, represents
a small perturbation which does not affect the magivalues. In contrast, folN = 6,

where topologically distinct classical configurations coexist, the tunnelling between SEMs
and SIMs plays a crucial role in determining thievalues of the low-energy ground states

of the system. In particular, Maksym pointed out that tunnelling between SEMs and SIMs
should be most favourable when the SEM and SIM configurations have a cothivalne.

This is consistent with analogous ideas in single-particle tight-binding theory, where the
overlap matrix element (and hence the bandwidth) is larger between s orbitals than between
s and p orbitals. Maksym conjectured that the resulting tunnelling might lead to ‘liquid’-like
states with a lower overall energy.

These considerations motivate us to follow a similar strategy Noelectrons. In
particular, we will show that considering just a subset of particle interchangey of
corresponding to rotations of rings within the Wigner molecule (WX) and Wigner molecule
plus defect (WXD) issufficientto determine the magid-values corresponding to the
observed FQHE filling factors. As fav = 3, we focus on the vicinity of a given SEM,
e.g. ;. Following the discussion in section 2.3, interchanging< r; is relatively
straightforward fori, j > 1 since X; ~ rajei(’/ ~ r;. Neglecting terms of ordefl/N),
it just corresponds te; < «; and6; < 6;,. The derivation of the transformation rules,
including terms of orde(1/N), is straightforward but tedious. Just as fér= 3, however,
it turns out in what follows that we do not need to consider individual j transformations.

3.1. The spin-polarized system

Consider the classical configuratiéf shown in figures 4 and 5. For largethe electrons

can be thought of as forming an approximately ring-like structure. Counting the number
of rings from the centre outwards, the first ring contains 6 electrons, the second contains
approximately 12 and so on. We first focus on a ‘typical’ ring without any defects; it will
contain a large, even numb#i, of electrons (approximately#6 electrons where > 1),

but these electrons will have an indgxs> 1, i.e. we are not considering rings near the edge
of the N-electron droplet. We are going to consider just the subset of all particle interchanges
i < j which are equivalent to rotations of thisth ring. SinceX; ~ ra;é% ~ r;, all
members of the ring have approximately the same.e. {«;} = «, for all j in ring m.
Hence interchanging two members of the ring just involves a transformation between their
g;-coordinates. Since all members of the ring have a similar environment and thexsame
the potential energy; and hence; in equation (26) will have the same form for glin the

ring m. As for N = 3, the lowest-energy solutions should be those wjthodelessg; will

be an approximately gaussian functiongpf centred a¥}q. Hence we can writg; = g,

for all j in ring m. We now rotate the electrons in the ring, and hence the ring itself, by an
angle 2r/N,,. SinceX; ~ r; this corresponds t6; — 6, + 27 /N,,. Theg,, functions are
nodeless and (in a given ring) identical, and hence the prodyet (6, — () for j in

ring m can be replaced by]; g.(6[ — €;0). The transformation keeps the system within
the subset of all SEMs corresponding to the same ring ordering, i.e. just a5 o8 the
rotation operation in real space becomes a space-group operafspace which translates

the system between SEMs. Recall tliai’) for minimum-energy states should resemble a
‘bonding’ linear combination of s-like orbitals (i.e. an approximately gaussidapendence
around the various SEMs (equation (28))). The coefficientsn the expression fo6 (')
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in equation (28) will therefore be identical for all of the SEM minirff;} corresponding
to this same ring ordering. Sind&(2") corresponds to a linear combination of identical
orbitals with the same coefficient, the overall effect of the transformatio& @) due to
ring rotation will be quite small; we simply move between this subset of SEM$, each
of which has the same local orbitals. In contrast, the effect orothariable is relatively
important; it follows from equation (8) th& — 6, 4+2r /N,, corresponds t6’ — 6’4+ A6,
where

2 2
Nm(N_l) B (N_l)

The total functionF(Q2) = €79 G(Q2') hence becomes’/d? F(Q). Given thatN,, is an

even number, rotation of theth ring by 27 /N,, necessarily corresponds to an odd number
of interchanges <« j. If we assume that the electrons @@n polarized the spatial part

of the N-electron wavefunction must be totally antisymmetric, and hence the overall phase
change must equal™*Y wheren is any integer. Denoting thd-value asJyy, we
therefore obtain the condition

A8 = N,,

1
Jwx = 5(N = D21 +1). (29)

Importantly, this criterion forJyx is independentof m, and hence holds for all rings
m. In other words, this criterion guarantees that theelectron wavefunction has the
correct permutational symmetry under the subset of all permutations electrons which
correspond to ring rotations. Note thayy must be an integer.

Now consider the Wigner crystal plus defect (WXD). Fisher, Halperin and Morf [26]
showed that the lowest-energy defect states correspond to interstitial defects, i.e. an extra
electron sits on an interstitial site in the otherwise perfect crystal. Single vacancies have
a higher energy. Following Fishet al, there are two types of interstitial site, ‘centred’
and ‘edge’ interstitials, and these are by far the most predominant type of defect at finite
temperatures. In our model, these defects can be created by introducig &nl)th
electron which forms the defect. There are several reasons for this being reasonable. First,
the alternative scheme of allowing one of the existing electrons to form the defect
would create an interstitighlus vacancy; following Fisheet al the total energy of such
a defect is approximately three times larger than a single interstitial. Second, creation
of such an interstitial-vacancy pair would involve a transformation of bttand «-
coordinates within theV-electron space. Third, the definition of th&;;-variables (see
equation (9)) is independent of the coordinates of electvos 1. Hence theN-electron
Q' coordinate system is essentially unchanged by the presence of the extra electron. The
hyperangular functior (€') for the N-electron system can therefore be compared directly
to the corresponding hyperangular function for thé+ 1)-electron system when projected
onto the N-electron’ space. We wish to consider the effect of this defect on ring
Following Fisheret al [26], the distortion of the crystal will be well localized around the
defect. In terms of the hyperangular coordinates, part of the local crystal distortion will be
subsumed in the coordinate and the effect on the hyperanglkesandé of the electrons in
ring m will be relatively small unless the defect lies in ring Assume that the defect lies
in ring m = m,. The antisymmetry condition obtained above for the perfect crysiat X
will still be approximately valid for all rings withn # m,. In ring m,, there are now an
odd number of electrongv,, + 1. The rotatiord; — 6, + 27 /(N,, + 1) now corresponds
to 6’ — 6’ + A6’ where

2

A0 = (Np+1 T -
N+ DN TON = N
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(NB we now have anfN + 1)-electron system). Because of the odd-member ring, rotation
corresponds to an even numberiof> j interchanges. The hyperangular function for the
(N + 1)-electron system of crystal plus defect, when projected onto the origirelectron

Q' space, is essentially unchanged—the origiNa¢lectrons are only slightly distorted by
the presence of the defect. Hence the overall phase chaije must equal "', where

n’ is any integer. Denoting thé-value asJwxp, we therefore obtain the condition

JWXD ZN}’l/. (30)

Again, this criterion forJy xp is independenof m, and hence holds for a single defect
located in any ringn. Also, Jyxp must be an integer. These two criteria, taken together,
therefore guarantee that theelectron wavefunction has the correct permutational symmetry
under the subset of all permutationsiéfelectrons which correspond to ring rotations, both
for the perfect crystal (WXandthe crystal plus defect (WXD). For the perfect crystal, we
can consideV to be odd since each ring contains an even number of electrons, plus there
is one electron at the centre. Combining the two conditions/fex and Jy xp, we hence

see that the WX and WXD have the following commésrvalues:

Ty = %N(N —1@2n+1) (31)

wheren is any integer. Converting thesg,-values into filling factors using the formula
v = N(N —1)/2J,, which is valid for largeN, yields

1
V= .
n+1

This coincides with the principal series of FQHE fractions, %,eand ?1) The valuey =1
will be discussed below. As an illustration we consider the cas#’ of 201 electrons.
The allowedJy x-values are 10k 1, 100x 3, 100x 5, etc, while the allowed/wxp-
values are 20k 1, 201x 2, 201x 3, etc. It is clear that commodi-values are given by
Jn =100x 201x 1, 100x 201x 3, etc, and hence = 3, ;.

(32)

3.2. The spin-unpolarized system

We have so far generated thig -values for a system of spin-polarized particles. Next
we consider the opposite limit of a spin-unpolarized system, Ne. = N_ where

N = N, + N_, and N must therefore be an even number. The arguments will be more
approximate in this case, but we believe will still contain the essential physics. Consider a
‘typical’ ring as before. Let this ringn, containy,, electrons wherev,, > 1; the ring will
typically haveN,, /2 up-spins anav,,, /2 down-spins. Due to the Pauli principal keeping like
spins apart, we will assume that on the average the ordering corresponds to the alternating
sequence up-spin—down-spin repeated around the ring (see figure 6(a)). Rotation of the ring
to a topologically identical configuration now involves a rotation of all of the electrons in
the ring by an angles2/(N,,/2), i.e. we have to rotate through twicer 2V,,. The rotation

0; — 0; + 2w /(N,,/2) corresponds t@’ — 0’ + A6’ where

N 2 _ A
"(Nm/(N—-1)  (N-1)
Since N,, is an even numbeny,,/2 can either be odd or even. Rotation of théh ring

by 47 /N,, therefore corresponds to either an even or odd number of interchangeg
for both spin-up and spin-down electrons. Hence the total number of interchandige of

A9 =




A correlated, 2DN-electron gas in a magnetic field 5907

N,: N
(@)
1:1
®) 2:1
© 3:1

Figure 6. A typical ring m for the various spin polarizations. Although only 12 particles are
shown for clarity, the ring is assumed to contain a large numberM,e>> 1 sincem > 1.
(@ Ny:N_ =11 (b)Np:N_ =2:1. (C)Ny:N_ =3:1.

spins is always even. The overall phase change must therefore &jtiavieeren is any
integer. Denoting thg/-value asJy x we therefore obtain the condition

Again this criterion forJyx is independent ofz, and hence holds for all ringa. Now
consider the Wigner crystal plus defect (WXD) with the defect in ring The defect
corresponds to an extra electron which can either be spin-up or spin-down. There are now
an odd number of electronsy,, + 1. We now have, for larg&v,,, that

_47{
(N, +1)N N

for the N + 1 electron system. Because of the odd-member ring, rotation now corresponds
to an overallodd number ofi <« j interchanges. This is because either the spin-up
interchanges are odd while the spin-down ones are even, or vice versa. Hence the overall
phase change’@? must equal 82"+ wheren’ is any integer. Denoting thé-value as

Jwxp, we therefore obtain the condition

A0~ 2(N, + 1)

1 1
J =_N(n"+ ). 34
WXD = 5 (n +2) (34)
Again, this criterion forJyxp is independent ofn. These two criteria, taken together,
therefore guarantee that the spin-unpolarizéeclectron wavefunction has the correct
permutational symmetry under the subset of all permutationsVoglectrons which

correspond to ring rotations, both for the perfect crystal (VéXyl the crystal plus defect
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(WXD). Combining the two conditions for integer values &fx and Jyxp, we hence see
that the WX and WXD have the following commaohvalues:

1
I = 7 N(N —1)(2n + 1) (35)
wheren is any integer. Converting thesk, -values into filling factors yields
2
= ) 36
YT a1 (36)

This coincides with the second series of FQHE fractions,%i,.é., 2, etc, and hence suggests

that the ground states at these fractions will be spin unpolarized in the absence of Zeeman
energy, in agreement with earlier finite-size numerical calculations (see p 63 of reference
[3]). Interestingly the series also reproduces the IQHE valde2. As an illustration we
consider the case aV = 200 electrons. The allowedy x-values are 19% 1, 199x 2,

199 x 3, etc, while the allowed/y xp-values are 56« 1, 50x 3, 50x 5, etc. Common
J-values are given by,, = 199x 50 x 1, 199x 50 x 3, etc, and hence = 2, Z, etc.

3.3. The partially spin-polarized system

Consider a partially spin-polarized system. First we will take = 3N_, where

N = N, + N_ and N is again even. Consider a ‘typical’ ring as before. Let this
ring, m, contain N,, electrons wherev,, > 1; the ring will typically have 3/,,/4 up-

spins andn,,/4 down-spins. Due to the Pauli principle keeping like spins apart, we will
now assume that on average the ordering corresponds to the sequence up-spin—up-spin—
up-spin—down-spin repeated around the ring (see figure 6(c)). Rotation of the ring to a
topologically identical configuration now involves a rotation of all of the electrons in the
ring by an angle 2/(N,,/4), i.e. we have to rotate through four times 2V,,. The rotation

0; — 0, + 2w /(N,,/4) corresponds t@’ — 6’ + A6’, where

N 21 _ 8
"(Nu/H(N-1)  (N-1)

SinceN,, is an even number,/3, /4 andN,,/4 are either both odd or both even. Rotation
of the mth ring by 8t/N,, therefore corresponds to either an even or odd number of
interchanges <« j for both spin-up and spin-down electrons. Hence the total number
of interchanges ofike spins is always even. The overall phase change must therefore
equal & wheren is any integer. Denoting thé-value asJyx, we therefore obtain the
condition

A6 =

Again this criterion forJy x is independent ofz, and hence holds for all ringa. Now
consider the Wigner crystal plus defect (WXD) with the defect in ring The defect can
either be spin-up or spin-down. There are nowaall number of electronsv,, + 1. We
now have, for largev,,, that

2 _ 8
(Nw+1N N
for the (N +1)-electron system. Because of the odd-member ring, rotation now corresponds

to an overallodd number ofi < j interchanges. This is because either the spin-up
interchanges are odd while the spin-down ones are even, or vice versa. Hence the overall

A0 ~ AN, + 1)
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phase change’é® must equal 82"+, wheren’ is any integer. Denoting thé-value as
Jwxp, we therefore obtain the condition

1/, 1
Again, this criterion forJyxp is independent ofn. These two criteria, taken together,
therefore guarantee that the partially spin-polariz€eelectron wavefunction has the
correct permutational symmetry under the subset of all permutations electrons which
correspond to ring rotations, both for the perfect crystal (VéXyl the crystal plus defect
(WXD). Combining the two conditions for integer values &fx and Jyxp, we hence see
that the WX and WXD have the following commohvalues:

1
I = éN(N -D@2n+1 (39)
wheren is any integer. Converting thegg -values into filling factors yields
4
= . 4
T on+1 (40)

This coincides with the fourth series of FQHE fractions, ige.%‘, etc, and hence the
theory suggests that the corresponding ground states at these fractions will be partially spin
polarized in the ratio of spin-up to spin-down of 3:1 in the absence of Zeeman energy.
Again this is in agreement with finite-size numerical calculations (see p 63 of reference
[3]). As an illustration we again consider the caseNof= 200 electrons (NB we have 4

as a factor since the ratio of spin-up to spin-down is 3:1). The allowgg-values are

199x 1, 199x 2, 199x 3, etc, while the allowedy xp-values are 2% 1, 25x 3, 25x 5,

etc. CommonJ/-values are given by,, = 199x 25 x 1, 199x 25 x 3, etc, and hence
v=2¢, 4 etc

Next we takeN, = 2N_, whereN = N, + N_ and N is again even. Consider

a ‘typical’ ring as before. Let this ringm, contain N,, electrons wherev,, > 1; the

ring will typically have 2v,,/3 up-spins andv,,/3 down-spins. Due to the Pauli principle
keeping like spins apart, we will assume that on average the sequence corresponds to up-
spin—up-spin—down-spin repeated around the ring (see figure 6(b)). Rotation of the ring
to a topologically identical configuration now involves a rotation of all of the electrons in
the ring by an angle2/(N,,/3), i.e. we have to rotate through three times/%/,,. The
rotationd; — 0; + 2 /(N,,/3) corresponds t@’ — 6’ + A6’, where

N 2 B 61
"(Nu/3)(N—-1)  (N-1)

SinceN,, is an even number,/2,,/3 andN,,/3 are either both odd or both even. Rotation
of the mth ring by 6r/N,, therefore corresponds to either an even or an odd number of
interchanges <« j for both spin-up and spin-down electrons. Hence the total number
of interchanges ofike spins is always even. The overall phase change must therefore
equal &, wheren is any integer. Denoting thé-value asJyx, we therefore obtain the
condition

AG' =

1
mx=§N—nm (41)

Again this criterion forJy x is independent ofz, and hence holds for all ringa. Now
consider the Wigner crystal plus defect (WXD) with the defect in ning The defect can
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either be spin-up or spin-down. There are nowaald number of electronv,, + 1. We
now have, for largev,,, that

6r
(Nw+DN N
for the (N + 1)-electron system. Because of the odd-member ring, rotation now corresponds
to an overallodd number ofi < j interchanges. This is because either the spin-up
interchanges are odd while the spin-down ones are even, or vice versa. Hence the overall
phase changee*’ must equal €'V, wheren' is any integer. Denoting thé-value as
Jwxp we therefore obtain the condition

A0~ 3(N, + 1)

1/, 1
JWXD = 3N<l’l + 2) (42)
Again, this criterion forJyxp in independent ofn. These two criteria, taken together,
therefore guarantee that the partially spin-polariz€eelectron wavefunction has the
correct permutational symmetry under the subset of all permutations electrons which
correspond to ring rotations, both for the perfect crystal (Ve for the crystal plus defect
(WXD). Combining the two conditions for integer values .&fx and Jyxp, we hence see
that the WX and WXD have the following commaohvalues:

T = %N(N — D2 +1) (43)

wheren is any integer. Converting thesk, -values into filling factors yields

3
V= .
n+1
3

This coincides with the third series of FQHE fractions, ige.7, etc, and predicts the
corresponding ground states to be partially spin polarized in the ratio of spin-up to spin-
down of 2:1 (or vice versa) in the absence of Zeeman energy. We note that there is an
alternative system that also yields the filling factor seties 3/(2n + 1). In particular,

this fraction emerges from considering a fully spin-polarized system, but now considering
rotation of two rings simultaneously. These two states WWthN_ = 2:1 andN_ = 0,
respectively, probably compete to become the ground state depending on the value of the
Zeeman energy (and hence magnetic field). Interestingly, finite-size studies have shown
that they = g state is indeed partially polarized f@& < 15 T in the ratioN,:N_ = 2:1,

but fully polarized forB > 15 T (see p 160 of reference [3]).

The above arguments can be extended straightforwardly to congider (p — L)N_,
whereN = N, + N_ and p is any integer. In this case, the corresponding filling fraction
becomesy = p/(2n + 1). We now focus on the filling factov = 1 (IQHE). We have
already shown that this state emerges from the two following series:1/(2n + 1) for
n = 0 in a fully spin-polarized system, or = 3/(2n + 1) for n = 1 in a partially spin-
polarized system. In fact, for a given spin polarizativiyp = (p — 1)N_ with p odd,
the factorv = 1 will always arise, i.e. by choosing = (p —1)/2. It is reasonable to
expect these states to compete to become the ground state. This is consistent with recent
findings that a gap exists at= 1 (IQHE) even in theabsenceof Zeeman splitting. The
possible coexistence of a manifold of partially spin-polarized states is also consistent with
the idea of macroscopic spin textures neat 1; in particular, taking a linear combination
of partially spin-polarized states enables the construction of localized ‘wave-packets’ of
spin to be carried out—we conjecture that the resulting spin textures may be related to
skyrmions.

(44)
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We note that the above filling factors emerged from requiring that the WX and WXD
had a common angular momentum value. The defect was considered to be an interstitial
electron. It turns out that, as far as the commbnvalues are concerned, we could also
have considered the defect to be a vacancy. The proguct 1)(N — 2) would have
appeared throughout this section insteadva@iv — 1); in the large&’ limit, both products
yield ~N? and hence the same filling factors. HenceJat J,,, the WX can coexist with
a WXD where the defect is either an interstitial electron or a vacancy. As noted earlier,
however, such vacancies do have a higher energy, and hence are less likely to occur at finite
temperatures.

3.4. Analytic calculation of FQHE energy gaps

In this section we will give an analytic calculation for the energy gaps associated with the
FQHE and IQHE states, i.e. fof = J,,. The calculation is approximate since it relies on
the various approximations made in section 2.3. However, our goal is to find whether the
gaps predicted by our model are in fact consistent with the observed FQHE gaps, and also
to identify trends in the energy gaps with filling fraction, magnetic field, etc.

In section 2.3, we obtained an approximate expression for the relative eAgrdgee
equation (27)). This energy depends & and E,. In section 3, we argued that the
important criterion characterizing the magic-numbleralues was that the crystal (WX)
and defect (WXD) can both have the sanievalue, given byJ = J,,; this leads to a
large delocalization energy due to increased WX-WXD tunnelling2inspace. In the
language of single-particle tight-binding theory, the resulting energy gap between states
with J = J,, and J # J, arises from the hybridization of th&(2’) solutions peaked
around, for exampleg2, and szg;a at J = J,. This hybridization hence yields a oW,
because of the corresponding delocalizatiorGgf?’) at J = J,, i.e. a reduction in zero-
point energy. Here we will obtain an analytic expression for this energy using a simple
model for the effect of delocalization, and show that the resulting gaps are consistent with
experimental findings.

As pointed out earlier, a state of a given negativavill have an energy minimum at
a finite magnetic fieldo.. As w. increases, the value of at which the energyEe(J)
has a minimum will increase. We will calculate the energy difference between a state with
J = J, and competing low-energy states withgiven by J,,. = J,, £§ at a givenw,,
where$§ « J,,. The lowest-energy state with= J,, is given by equation (27) with = O:
Erei(Jn) = Eam(B)[([N —2P+ U5+ 2"}_:2’3 V()

om* 1/2 o
+ h?[EH(Jm) + Ea(Jm)]) + 1] - JmT” (45)
while that withJ = J,.. is given by
Erel(Jps) = Ea)o(B)[<[N — 2P+ [J, £ 68]2
2m* B om* 1/2 hio,
+ ,7"(%) + ?[Ee(Jmi) + Ea(Jmi)]> + 1} R
(46)

As discussed in section 2.1, the angular momentum is negative for low-lying energy states;
hence we have included the minus sign directly into these expressiong,, iand J,,.
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are positive numbers. Consider the state with= J,,. This state can coexist as both a
crystal (WX) and a crystal plus defect (WXD), in contrast to the stite. The transition
WX—WXD will involve a distortion of theQ’ coordinates. This distortion i’ space
corresponds to a spreading or ‘delocalization’ of the functig®’) along these directions.
There is therefore a reduction in ‘localization’ energy going from a state Wwitlg J,,
(i.e. WX and WXD cannot coexist) to a state with= J,, (i.e. WX and WXD can coexist).
We will hence write

Eg(Jn) + Eo(Jn) + BV () = Eg (47)
while
Eg(Jns) + Eq(Jns) + BV () = Eo + A (48)

whereA represents the increased localization energy of stateas compared td,,. Note
that the potential energy minimupV (€2;) is a constant term throughout. In the appendix,
we show that typicallyA ~ N2, while Eg ~ N3. Hence in the limit of N > 1, we
have Ey > A. We also recall from section 3 thd}, ~ N2. It follows by expanding out
equations (45) and (46) in the limN > 1 that

m*AJR? + J,,8 } ho,
[J2 + 2m* Eo/h?]Y/2 2
We are interested in the largé-limit, since our goal is to calculate the FQHE gaps; hence
we will choose the confinemenly <« w., which yieldswg(B) ~ w./2. Let us first consider

the filling factorv = % and henceJ,, = 3N (N — 1)/2. Substituting into equation (49), we

obtain the approximate expression for the energy gap:
1m*A _

There are several points to note about this expression for the energy gap §.t

AE, = Erel(Jpt) — Era(Jy) = ECUO(B)[ (49)

() Given that A ~ N2 for large N, the expression isndependenif the electron
numberN. It is also independent of the strength of the parabolic potentalFor a given
w, corresponding to the filling factar = % we can therefore take the thermodynamic limit
N — oo and yet still maintain dixed average electron density by choosing appropriately
small values ofwy. Our expression for the energy gap at filling facior= % which
was derived in terms af -values for a fixedv system, therefore also holds for an infinite
two-dimensional electron gas of fixed density.

(ii) The expression for the energy gap does not exhibit a direct dependence on the value
of the electron—electron interactigh We do emphasize, however, that throughout most of
this paper we havassumedhat g is large enough for us to be able to neglect tunnelling
between SEMs. Hence we can only conclude that the absolute vaffiel@és not directly
affect the energy gap\E for sufficiently largeg. This is consistent with experimental
findings that the gap can be remarkably sample independent [3]. Below we will mention
how a weak dependence gnwill arise if one considers smaller values gf

(iii) The energy gap appears to be approximatiéhear in the magnetic field. Most
previous theoretical studies conclude that the dependence reseBiflefs we will show
below, the linear dependence is in reasonable agreement with experimental data, particularly
at lower fields. However, we will later discuss how a weaker, non-linear dependend, i.e.
wherex < 1, can eventually arise at larg@rin our model.

(iv) The energy gap does not depend oto first order in(8/J,,). This independence
of § is important since it implies that the energy gap exists between $tatandall other
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states withJ in the vicinity of J,,. We know from the discussion at the end of section 2.1
that, over a given range of magnetic field, the states which compete to become the ground
state will be those of similay. Hence we expect the energy gap arising to exist over a
small but finite range of magnetic field, as observed experimentally.

(v) The expression for the gapE can be made applicable to situations where the lowest-
energy excitation involves spin flips, by addidgEsyin, Where A Egpin is the difference in
total spin energy between the excited state andvthe% spin-polarized ground state. We
are interested in the lowest-energy excitations WitHspin = 0; A Egpin > 0 for the fully
spin-polarized initial state at = % For other fractions, the term. will have an indirect
dependence on the spin configuration since, for a mixed spin systeif?/ ggace is really
coupled to the spinor space by the antisymmetry condition, and h&@§ is actually a
two-dimensional vector. A detailed discussion of spin-reversed excited states will be given
elsewhere.

(vi) Given the discussion in (v), together with the fact thathas a weak but finite
dependence od,, (see later), we can conclude the value/ofwill generally be different

for different fractions. Gaps at other fractions in the= p/3 series are discussed below.

We will now attempt to derive an approximate analytic expressionAor Consider
the N-electron system a¥ = J,. As discussed in section 3, the system can exist as
both a crystal (WX) and a crystal plus defect (WXD), in contrast to the state We
will argue in what follows that the transition WWXD involves a significant fractional
distortion of6-coordinates. This distortion along té ;;}-axes inQ’ space corresponds to
a spreading or ‘delocalization’ of the functi@i(2’) along these directions, thereby giving
rise to a finiteA. In sections 2 and 3, we argued that the low-energy SIMs near a given
SEM consisted of a single-electron defect placed at an interstitial site within the hexagonal
crystal. As noted at the end of section 3, the defect could also be a vacancy, although
the corresponding SIM would have a higher energy. Consider a defect placed im ring
which containsVv,, particles withN,, > 1, and let the defect be sited betwegand j + 1
(cf. figure 5). Classically, the system moves to a nearby SIMirspace (cf. figure 2).
In particular, the defect will cause a distortion of the coordinates of parficka order to
calculate the maximum possible distortion (and hence delocalization available as a result
of the hybridization between the SEM and SIM), we will consider the particular SIM in
which only particlej moves to accommodate the defect. In principle, bothdheand
6;j1-coordinates will be modified, thereby ‘sharing’ the effect of the distortion. However,
with the defect placed betweenand j + 1 in ring m, the distortion of particlej will
mainly be along the;;-direction. The idea that the most important effect of the defect is
the distortion of the&-coordinates is consistent with the following considerations. Consider
any particlej’ near to the defect with coordinat@s;; and «;. Let the nearby defect
cause a distortion af in all directions. Hence the new coordinates of the partjclare
approximatelyx; +a and6j;1 +a/a;. The relative distortion caused by the nearby defect
is henceAw; /aj ~ a/aj, while A6f;q/61 ~ a/(aj61). FOrN > j', ay changes slowly
with j’, and is unchanged if’ lies in ring m. However,6};1 ranges from 0 to 2 within
ring m, and hence the fractional chang®;;, can be significant.

We will therefore consideA as arising as a result of the difference ip for J,, as
compared ta/,,+. The loss of ‘localization’ energy of the stafg as compared td,,. can
be significant along th&;;;} directions, i.eE, can differ appreciably depending on whether
the functionG (') is localized (i.e.J = J,,.) or not (/ = J,;). Consider equation (26) for
the ‘energy’e; associated with a particlg in ring m whereJ # J, (i.e. WX and WXD
cannot coexist). The equation resembles a one-dimensionabdeber equation iy, for
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a masswjo moving in a potentiakw; (6,1 — 6. The functionw; will have a minimum
at 6,1 = 6o, whereas there are maxima&y; = 6;;0; = 27/N,, as particlej approaches
particle j + 1. For N = 3, recall figure 3, where moving along theaxis @-axis) at fixed
o = ap (i.e. x = 0) produced a minimum at = 0 and maxima ay = +x/2. We can
approximatee; using a simple one-dimensional particle-in-a-box model: we will assume
thatw; is a flat-bottomed potential with infinite walls t; = 60 £ 27 /N,,. The width of

the box is therefore given by; = 47 /N,,. The energye;” is hence approximately given
by

72272

—— 51
J 2m*afo[4n]2 ®1)

Note that the width of the wavefunctiqg), and hence the localization 6f(2) alongéy;i,

is characterized by,. This expression (equation (51)) fej") implicitly assumes that the
electron—electron interactigh is large; for smaller values ¢f, the particle-in-a-box energy
should pick up a weak dependence @nThroughout this paper, however, we will use the
approximate analytic form given in equation (51). At J,,, there is distortion of5 ('),
since WX and WXD can coexist. The defect can occupy any interstitial site in the crystal,
each defect position produces a distinct SIM. There exists a SIM s(l%)g) in which the
defect is placed next to particlg say between particlesandj + 1 as used earlier. We can
see that there is one such SIM associated with éggltoordinate. If, as discussed above,
we consider the main distortion as occurring on éhg-coordinate of particlej, then the
associated SIM lies on th-axis. In this case the coexistence of the SE}l and the
SIM € ; causes an increase in the effective box width;> a; + éa;. The energy along
the g ;;-direction is now given by
om _ w, 0¢” Dlq_ %% 5

e e + Baj ———8a; ~ ¢ [1 4 i| (52)
Although there are many such SIMs associated with each SEM, we know that the defects
have a low density at the temperatures of interest. The system also requires a large time
to tunnel between these SIMs, since each SIM describes a different defect position in
the crystal; diffusion of the defect between sites will be slow at low temperatures. It is
reasonable therefore to suppose that each SEM hybridizes with just one of these SIMs at
any time. The average loss of localization energy of sfgtas a result of distortion due to
a nearby SIM is therefore obtained by averaging ove( il 2) 6;;-coordinates. Hence,
using equation (52),

A~ i 2[5“1} e ~ 2[5“]@ (53)

N -2 aj a

wherex represents an average of the quantitpver all (N — 2) of the 6[,)-coordinates.

We could also try to obtain expressions falE at other fractions. Consider = %

Equation (50) now has the factérreplaced by%. Assuming as a crude approximation that
the values ofA are the same, we obtain the result theE/5:AE1/3 ~ 0.6 for samples

at a given magnetic field. The literature tends to put this ratio at about 0.3-0.4 [27, 28].
One could also try to evaluatA E for other fractions where the ground statg and/or

the excited stated,,. are thought to have spin-reversed electrons. Such a calculation
needs a more careful estimation Af as discussed earlier. Here we will just provide a
rough estimate by considering, as before, excit?tions which do not change the total spin

component (i.eA Espin = 0). We will choosev = 3 in order to compare with the results
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for v = 1. There are two effects of considering= 3 instead ofv = ; when re-deriving

the expressions obtained in this section. The prefactor in equation (50) increases by a
factor of 2, whileda;/a; decreases by a factor of 2. This decreasédfya; arises as
follows. Recall that like spins in the spin-unpolarized case are separated by twice the angle
of the spin-polarized case. The ‘unit-cell’ size @ space is determined by the separation
between neighbouring SEMs, and is therefore twice as large for the unpolarized case. The
effective box size must therefore also be twice as large, i.e. the effegtivalue is now

8m /N,, instead of 4 /N,,. Hence the final result is thakEy3 ~ AEq3. Although we

do not attach too much importance to this result because of the complications of spin, it
is interesting to note that experimentally the gapsifoe 51,, andv = % are found to be
similar [3, 27, 28], as will be shown below. We note that allowing for spin-flip excitations
atv = % may reduce the overall gap at lol, since A Esyin can be negative if the ground
state is not fully spin polarized. Hence the total gap may be negligible ﬁer% at low B.

This feature is also seen experimentally. The same argument concerning effective box size
should also be approximately true for the other partially spin-polarized fractions in/e
series. Consider = p/3. The prefactor in equation (50) increases by a faptowhile the
effective box size also increases by the same factor. The net effect is that the expression
for the gap is similar for all fractiong/3, wherep = 1, 2, 4, 5, etc. Hence the energy gaps

for the p/3 fractions measured across a range of samples should all fall on approximately
the same curve as a function of magnetic field.

Equation (53) presented an analytic expression forwhich, to the level of
approximation employed, did not depend on the ground-statealue. Examination of the
more accurate versions of the hyperangular equation presented in section 2.3 suggasts that
should actually have a weak but finite dependencd,pfrecall, for example, equation (23)
or (24)). In theN = 3 study in section 2.2, we found that increasihglid indeed increase
the localization ofG (") around the classical minima. For largg as discussed in section
2.3, the dependence ofp should be weaker; however, the resulting hybridization between a
given SEM (i.e. WX) and nearest-neighbour SIMs (i.e. WXD) should also decrease slightly
as J,, increases. Decreasing hybridization will reduce the valua @fs J,, increases. It is
interesting to analyse the effect of this reductionAnfor the separate situations of (a) a
given sample over a range ofvalues, and (b) different samples at a given fixedIn
case (a), the number of electronsis fixed. As the value of/, increases, the value of
w. at which thisJ,-value represents the ground state must also increasA. décreases
as J,, increases, thel must also decrease with increasiag This reduction inA asw,
increases, if sufficiently large, will mak& E — 0; we suggest that this may be related to
the predicted formation of a Wigner solid (i.e. gapless excitations) at very high magnetic
fields. In case (b), fixed means that increasing, requires an increase iN (recall that
Jn = N(N —1)/(2v)). If A decreases as, increases, therh must also decrease a6
increases. However, a fixed value ofmeans that increasinfy requires an increase in
magnetic field. Henc@ decreases as, increases. As mentioned earlier, this will tend to
weaken the linear magnetic field dependence of the theoretical gaps abfiwed with
0 < x < 1. Such a sub-linear dependence is consistent with recent experimental data at
high fields [29]. In the estimates of the gap discussed below, however, we take as a first
approximation the form ofA presented in equation (53). Consequently the calculated gaps
for a givenv always increase linearly with magnetic field.

We now proceed to discuss appropriate valuegafa], and hence calculate the gaps.
The precise value fofsa/a] will depend on the details of the crystal plus defect system
(WXD). Here we will suggest reasonable lower and upper estimates, and argue that the
particular value to be used will depend on the degree of disorder in the experimental
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samples. In particular, we will argue that the lower estimate is appropriate for disordered
(i.e. lower-mobility) samples, while the upper estimate is appropriate for pure (i.e. higher-
mobility) samples.

Energy gap (Kelvin)
£
I

o4
o]
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0 10 20 30

Magnetic field (Tesla)

Figure 7. The theoretical lower estimate (straight line) for FQHE energy gaps obtained from
the present theory as compared to experimental results over a range of lower-mobility GaAs
heterostructure samples. (This figure was adapted from the data of Boebtrajereferences

[27] and [3].) Experimental data: = % (black points),y = % (white points). As discussed in

the text, the theoretical gaps are the samevfer % andv = % to a first approximation.

First we consider the lower estimate fidu/a]. Fisheret al found that the maximum
distortion for a vacancy defect was about 12%, but that the value for the interstitial defect
was ‘considerably larger’ [26]. If the sample contains a significant impurity concentration,
it is likely that interstitial electrons will have difficulty in diffusing through thé-electron
system. The functionG(2) will therefore have a restricted delocalization for kinetic
reasons. In the absence of interstitial defects, the delocalization would be determined solely
by the vacancies. We will therefore take the value of 12% as a lower estimated bound for
[6a/a]. From the appendix, we have that

_ _ 2TR°N?

¢ 1ann2
and hence

h?N?

m*m2’
Substituting this into the expression for the energy gap, we oltdify; ~ 0.014hw, meV
and henceAE;;3 ~ 0.16hw. K. Given that 1 meV= 1.728B(T) (tesla) for GaAs, we
obtain AEy3 ~ 0.27B(T) degrees Kelvin. Hence & = 20 T, AEy3 ~ 5.5 K. Figure 7
compares this lower estimated bound of the energy gap :';It% (and hencev = % as
explained above) with early experimental results obtained by Boebetgdi{27, 3] over a
range of relatively impure samples (i.e. significant impurity concentration). The agreement
is surprisingly good; however, we emphasize that our calculation is obviously fairly crude.
Apart from improving the expression fdrE1,3 given in equation (50), one could do a better
job in calculating the localization energy from equation (53). Such improvements would
almost certainly render the calculation of energy gaps within the present model numerical,
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although such calculations would be more straightforward than the original alternative of an
N-electron diagonalization. Various numerical improvements will be presented in a future
publication; the goal of the present paper is to pursue a purely analytical theory.
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Figure 8. Theoretical upper (dashed line) and lower (solid line—the same as in figure 7)
estimates for FQHE energy gaps obtained from the present theory as compared to experimental
results over a range of higher-mobility GaAs heterostructure samples. The data were taken from
reference [28] of Malletet al (squares) and reference [30] of Willadt al (solid circles with

error bars). The experimental data contain values for the fractieag /3, wherep = 1, 2, 4, 5.

As discussed in the text, the theoretical gaps are independgntmh first approximation.

Now we turn to an upper estimate fpta/a]. We assume that the sample is pure, and
hence that there is no kinetic reason for ignoring interstitial defects. We first recall our
physical picture of the topology of the interstitial defect, stated earlier in this section. We
consider a ringn containingh,, electrons, including particles— 1, j, andj + 1 (cf. figure
5). The angle between particjeand j + 1 is 27 /N,,, and the angle between particle- 1
andj+1is 4t /N,. We let the defect lie in the ring between particleand j + 1. We are
looking for an upper estimate on the value[6#/a]; hence we will assume that the only
particle which moves to accommodate the extra electron is paytickes before, the angle
betweenj — 1 andj + 1 is still 47 /N,,, but now there aréwo particles ( and the defect)
within this angular range. In an equilibrium state (i.e. a SIM), the three angles between
j—21andj, j and the defect, and the defect apd- 1 are all equal to #/(3N,,). The
distortion of the effective box size for particjewill be determined by the angle betwegn
and j + 1. Hence an estimate of the average distorfi&uya] is (271/Nm)(‘§1 — 1) divided
by 27 /N,,, which gives%. Our upper estimated value pfa/a] is therefore B3. Figure 8
compares both this upper bound and the lower bound obtained earlier to experimental data
obtained by the Oxford and AT&T groups for a range of relatively pure, high-mobility
samples [28, 30]. The experimental values lie between the two bounds. This consistency
between the present theoretical results and experiment lends support to our interpretation of
the effect of sample purity.
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4. Conclusions

A microscopic theory describing a confinddelectron gas in two dimensions, subject to an
external magnetic field, was presented. The number of electvoasd the strength of the
electron—electron interaction can be arbitrarily large. For any value of the magneti®field
the correlatedV-electron states were shown to be determined by the solution to a universal
effective problem: this problem resembles that of a fictitious particle moving in a multi-
dimensional space, without a magnetic field, occupied by potential minima corresponding
to the classicalV-electron equilibrium configurations.

A possible connection with the fractional (FQHE) and integer (IQHE) quantum Hall
effects was subsequently proposed. In particular, it was shown that low-energy minima can
arise in the large¥ limit at filling factorsv = p/(2n + 1), wherep andn are any positive
integers. The energy gaps calculated analytically at p/3 were found to be consistent
with experimental data as a function of magnetic field, over a range of samples. Various
other known features of FQHE and IQHE states were found to emerge from the present
theory.

While it is obviously extremely difficult to calculate many-particle energy gaps, etc,
accurately using an analytic approach, we hope that the general qualitative trends and orders
of magnitude provided by the model will be useful in the understanding of the fascinating
but complex field of highly correlated/-electron systems. We also hope that the model
may begin to shed some light on the connection between the two limits of few-electron
correlated states in quantum dots, and the infinite two-dimensional electron gas.
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Appendix

First we derive an approximate expression foand henceA. The exact hyperangular
identity Zj’."zz[xj/r]2 = 1 implies that)"«? ~ 1. The moment of inertid of the (N — 1)-
particle system 2 space, treated as a rigid body, is therefore approximatelysjtistor
large N, the density of particles will be approximately uniform: the moment of inertia for
such a uniform disk is jus%(N —1)m*R? ~ LNm*R?, whereR represents the disk radius,
and (N — L)m* is the total mass. Henc®“ ~ 2/N, the average density of particles is
(N —1)/mR?> ~ N?/27, and the average particle—particle spacing-i$27]/?/N. Now
consider the sum over energie,@ from equation (51):

hznz[N ]2

J) m

o~ — . Al
Z eJ Z M*allzo[47r]2 ( )

The quantitya;o for particle j in ring m is approximatelyn times the average particle—
particle separation: i.ex;o ~ m[27]%2/N. Replacing the sum ovef by a sum over the
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rings m, and using the approximate result that there amep@rticles in ringm, yields

2Th*N e
) 3
]Zej 2[6 ] 64m* m?2  8mrm Zm (A2)

1

wherem,,,, is the maximum ring numbern,,,, is given approximately by the disk radius
R divided by the particle—particle separation. Hengé, ~ N/z. For largen,,,.,
Y m ~ Im?,.. Hence

max*

27h%N®

Y e ~ . (A3)
J 16,”*7[2

We require the average”-value, ¢, with the average taken over gil There areN — 2

such j-coordinates, and hence for largewe have

_ 27h%N?
e 16m* 72
as claimed in section 4. Given that
~ é
A~ Z[a]é (A4)
a
we obtain
- Sa] 27Th?N?
A~| = __ A5
|: i| 8m*m2 (AS5)

and henceA ~ N2 as claimed.

Second, we investigate the generdtdependence ofy. Following equations (47)
and (48), we assume thd#ty is dominated by the classical potential energy at the SEM
Q' = Qq, i.e. Eg ~ BV (). This is consistent with our assumption throughout the paper
of considering configurations close to the classical minima. Hence

(A6)

~h2
|tjo€%0 — o /oé9’°|2

Jj<J'

Replacing the denominator la? yields

Zl

J<I

and henceEg ~ ﬁN%(N — 1)(N — 2). For largeN, Eq ~ BN3/2, and henceEy ~ N3

as claimed. We note that while this derivation is crude, the final expressioBfis not
actually used in the calculation of the energy gaps. The only result used is the conclusion
that Eo > A for large N.
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