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Abstract. We present a microscopic, analytical theory describing a confinedN -electron gas
in two dimensions subject to an external magnetic field. The number of electronsN and
strength of the electron–electron interaction can be arbitrarily large, and all Landau levels are
included implicitly. For any value of the magnetic fieldB, the correlatedN -electron states are
determined by the solution to a universal effective problem which resembles that of a fictitious
particle moving in a multi-dimensional space, without a magnetic field, occupied by potential
minima corresponding to the classicalN -electron equilibrium configurations. Introducing the
requirement of total wavefunction antisymmetry selects out the allowed minimum-energyN -
electron states. It is shown that low-energy minima can exist at filling factorsν = p/(2n+ 1)
wherep andn are any positive integers. These filling factors correspond to the experimentally
observed fractional (FQHE) and integer (IQHE) quantum Hall effects. The energy gaps
calculated analytically atν = p/3 are found to be consistent with experimental data as a
function of magnetic field, over a range of samples.

1. Introduction

The problem of a highly correlated, two-dimensional electron gas in an external magnetic
field has attracted much attention in the past decade. Of particular interest is the microscopic
origin of the observed fractions in the fractional quantum Hall effect (FQHE) [1–3]. In
the past few years, it has also been appreciated that many-body effects play a role in
the formation of the gaps giving rise to the integer quantum Hall effect (IQHE). As a
complement to the experimental work on this subject, there have been many theoretical
models proposed for both the FQHE and the IQHE. These range from field-theoretical
treatments through to numerical, finite-size (N 6 6) calculations. One of the most successful
theoretical developments has been the proposal of trial wavefunctions by Laughlin and
others [1, 3–5] to describe the interplay of wavefunction antisymmetry and electron–
electron repulsion that effectively allows electrons in the lowest Landau level to form
a highly correlated electron liquid. A related development by Jain [6] considers the
construction of ‘composite’ fermions by attaching flux tubes to each electron—recent
work on Chern–Simons field theories provides some support for such composite-fermion
construction schemes [3, 7]. The general problem of describing anN -electron gas in
an external magnetic field has recently taken on additional importance in semiconductor
physics due to the fabrication of quantum dots containing a finite number of electrons [8–
10]. It is interesting to note that although the FQHE was originally observed in infinite
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two-dimensional electron gases (2DEG), it even persists in quantum dots containing a large
but finite numberN of electrons [11].

Given the fact that the underlying, microscopicN -electron Hamiltonian is known, one
could ask whether there exists an alternative, more direct way of understanding the nature
of highly correlated electron stateswithout recourse to composite-fermion constructions,
effective-field theories, restrictions to lowest Landau levels, and/or small numbers of
electrons. The obvious stumbling blocks are that the electron–electron repulsion and the
cyclotron energy are typically comparable in magnitude, and thatN -electron Schr̈odinger
equations are generally intractable analytically.

In this paper we pursue such an alternative approach, starting with anN -electron
Schr̈odinger equation. We develop a microscopic, analytical theory describing correlated
states of a confinedN -electron gas in two dimensions subject to an external magnetic
field B. The number of electronsN and the strength of the electron–electron interaction
can be arbitrarily large, and all Landau levels are included implicitly. We show that the
description ofN -electron correlated states at finiteB reduces to a universal effective problem
which resembles that of a fictitious particle moving in a multi-dimensional space occupied
by potential minima corresponding to the classicalN -electron equilibrium configurations.
Introducing the requirement ofN -electron wavefunction antisymmetry selects out the
allowed minimum-energyN -electron states. A possible connection with the FQHE and
IQHE is then proposed. In particular, it is argued that low-energy minima can form at
particular angular momenta corresponding to filling factorsν = p/(2n+ 1) wherep andn
are any integers. These filling factors correspond to those observed experimentally for the
FQHE and IQHE.

The present theory suggests the following possible physical interpretation of FQHE and
IQHE states. Consider anN -electron wavefunction localized around a Wigner crystal (WX)
configuration with total relative angular momentumJ . At particular values ofJ , N -electron
wavefunctions localized around nearby defect configurations (i.e. WX plus defect which we
shall denote as WXD) can coexist; we note that the allowed values ofJ such thatN -
electron states can coexist around WX and WXD simultaneously are severely restricted by
the requirement of total wavefunction antisymmetry. At these commonJ -values, which we
shall denote asJ = Jm, hybridization of theN -electron states centred on the WX and WXD
minima can occur. This hybridization effectively allows the electrons in the WX solid to
diffuse throughout the system via WXD defect states. The resulting delocalized ‘liquid’-
like N -electron state has a lower zero-point energy—a gap therefore opens up between
the liquid-like states atJ = Jm and other states atJ 6= Jm. For largeN , the resulting
liquid-like ground-states atJ = Jm have filling factors given by the well-known formula [3]
ν = N(N − 1)/2Jm. We find that theν-values at which these gaps arise are identical to those
observed experimentally in the FQHE and IQHE. The energy gaps calculated analytically
at ν = p/3 are found to be consistent with experimental data obtained from a range of
samples. Various other known features of FQHE states can also be reproduced.

The model avoids discussion of one-electron properties such as Landau levels, and
therefore offers the possibility of a unified description of both the FQHE and IQHE based
on a microscopicN -electron Schr̈odinger equation. The formalism in this paper builds on
an earlier model presented by us in reference [12]. In particular, we conjectured in reference
[12] that the classical minimum-energy configurations play a crucial role in deciding the
symmetry-allowedN -electron correlated states in few-electron quantum dots. It was pointed
out that the classical minimum-energy configurations forN < 6 all consist ofN particles on
a ring, while forN = 6, additional minima occur [13, 14]. Curiously, it is precisely atN = 6
that the magic-numberJ -sequence of1J = N is broken. This idea was independently
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pursued by Maksym in a fascinating way [15] forN 6 6—the classical Eckardt frame
was employed to study correlated few-electron dynamics and, in particular, the possible
existence of ‘liquid’-like states. We note that the term ‘liquid’-like was introduced by
Maksym to describe the loss of symmetry occurring when states corresponding to different
classical minima are allowed to mix. This terminology will also be used in the present
paper. We wish to emphasize that the model presented here is qualitatively different from
an earlier theoretical approach of Kivelsonet al [16] based on the so-called cooperative
ring exchange. In short, we are suggesting here that FQHE states are the liquid-like states
resulting from the hybridization ofN -electron wavefunctions localized around both crystal
(WX) and crystal-plus-defect configurations (WXD).

The outline of the paper is as follows. In section 2 we present the microscopicN -
electron Schr̈odinger equation. The hyperangular coordinate system is introduced for the
relative-motion Hamiltonian. The problem then reduces to a 2N − 4 hyperangular equation
(section 2.1). In section 2.2 the specific case ofN = 3 is outlined. This was discussed in
detail in reference [12], and is reviewed here since it is useful for visualizing theN -electron
results. In section 2.3 a simplified hyperangular equation is obtained which is valid in the
regime of strong electron–electron interactions and for largeN . The characteristics of the
lowest-energy solutions are discussed. Section 3 addresses the requirement ofN -electron
wavefunction antisymmetry. Permutation symmetries of theN -electron wavefunction
become space-group operations in the multi-dimensional hyperangular configuration space.
The states which will become ground states separated by a finite energy gap are found to
correspond to filling fractions observed in the FQHE. Section 4 obtains analytic estimates
for the FQHE gaps at the fractionsp/3 as an example. These estimates are found to be
consistent with experimental data over a range of samples, despite the fact that the results
emerge from a simple one-dimensional, particle-in-a-box equation. Section 5 summarizes
the results.

2. The microscopicN -electron Hamiltonian

The analytical tractability of our model is achieved via a combination of a parabolic
confinement potential and an inverse-square electron–electron repulsion potential. The
parabolic confinement is known to be a reasonable approximation for many semiconductor
quantum dot samples [17]. For the case of a heterostructure (i.e. a 2DEG) it mimics the
effect of a positive background, yielding an approximately uniform electron density in the
large-N limit (see reference [14]). Theβ/r2 electron–electron interaction (β > 0) is not
unrealistic in quantum dots due to the presence of image charges in neighbouring electrodes.
Recent theoretical work suggests [18] that the true repulsive interaction between electrons
in a quantum dot is more likely to be proportional to 1/rn with n ∼ 3 at larger andn ∼ 1
at small r. In heterostructures, the electron–electron interaction is probably less affected
by image-charge effects. However, the general features of our results, which are based on
the assumption thatn = 2 for all r, should still be qualitatively useful. In particular, the
occurrence of the FQHE in two-dimensional electron gases is not thought to depend crucially
on the precise form of the electron–electron repulsion. Recent quantitative comparisons
[17, 19, 20] have indeed shown that the 1/r2 and 1/r repulsive interactions yieldN -
electron energy spectra with very similar features. Of particular relevance to the present
theory is the finding that theclassicalminimum-energy configurations forN electrons in a
two-dimensional parabolic confinement potential seem to be very similar for 1/r and 1/r2

interactions [21].
The exact Schr̈odinger equation forN electrons with a repulsive interactionβ/r2,
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Figure 1. Jacobi coordinates for theN = 3 electron system. Reading clockwise, the classical
configuration for three repulsive particles�′0 ≡ (132) corresponds to(α, θ) = (π/4, π/2)
(i.e. (x, y) = (0, 0)); the other classical configuration�′1 ≡ (123) corresponds to(α, θ) =
(π/4,−π/2) (i.e. (x, y) = (0, π) or, equivalently,(0,−π)).

moving in a 2D parabolic potential subject to a magnetic fieldB (symmetric gauge) along
the z-axis, is given by(Hspace+Hspin)9 = E9;

Hspace=
N∑
i=1

(
(pi − eAi/c)

2

2m∗
+ 1

2
m∗ω2

0|ri |2
)
+
∑
i<j

β

|ri − rj |2

=
N∑
i=1

(
p2
i

2m∗
+ 1

2
m∗ω2

0(B)|ri |2+
ωc

2
li

)
+
∑
i<j

β

|ri − rj |2 (1)

whereω2
0(B) = ω2

0 + ω2
c/4, ωc is the cyclotron frequency, andHspin = −g∗µBB

∑
i si,z.

The momentum and position of theith particle are given by 2D vectorspi andri respect-
ively; li is thez-component of the angular momentum. The exact eigenstates are written in
terms of products of spatial and spin eigenstates obtained fromHspaceandHspin respectively.
The eigenstates ofHspin are just products of the spinors of the individual electrons, and
have energyEspin= g∗µBBSz, whereSz is thez-component of the total spin, andg∗ is the
electron effectiveg-factor. We employ standard Jacobi coordinatesXj (j = 1, 2, . . . , N)
whereX1 = (1/N)

∑
j rj (centre-of-mass coordinate), andXj>1 (relative coordinates) is

given by

Xj =
[
j − 1

j

]1/2[
rj − 1

j − 1
(r1+ r2+ · · · + rj−1)

]
(2)

together with the conjugate momentaPj (see figure 1 forN = 3). The centre-of-mass
motion decouples,Hspace= HCM(X1) + Hrel({Xj>1}), and henceEspace= ECM + Erel.
The exact eigenstates ofHCM and energiesECM are well known [23]. The non-trivial
problem is that of solving the relative-motion equationHrelψ = Erelψ . We transform the
relative coordinates{Xj>1} to standard hyperspherical coordinates:

Xj = r
( N∏
i=j+1

cosαi

)
sinαje

iθj

with r > 0 and 06 αj 6 π/2 (α2 = π/2). Physically, the hyperradiusr is just the
root mean square electron–electron separation. The exact eigenstates ofHrel have the form
ψrel = R(r)F (�) where� denotes the 2N−3 hyperangular{θ;α} variables;R(r) andF(�)
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are solutions of the hyperradial and hyperangular equations respectively. The hyperradial
equation is given by[

d2

dr2
+ 2N − 3

r

d

dr
− γ (γ + 2N − 4)

r2
− r

2

l40
+ 2m∗(Erel− h̄Jωc/2)

h̄2

]
R(r) = 0 (3)

where l20 = h̄(m∗ω0(B))
−1, andJ is the totalrelative angular momentum. The parameter

γ > 0 and is related to the eigenvalue of theB- andω0-independent hyperangular equation
(see section 2.1). Equation (3) can be solved exactly yielding

Erel = h̄ω0(B)[2n+ γ +N − 1]+ J h̄ωc
2

(4)

wheren is any positive integer or zero, and

R(r) =
[
r

l0

]γ
Lγ+N−2
n

(
r2

l20

)
e−r

2/2l20 . (5)

Equation (4) provides an exact and infinite set of relative breathing-mode excitations
2h̄ω0(B)1n for anyN regardless of particle statistics and/or spin states. These quantum
breathing modes were first reported in reference [12], and later confirmed by Geller and
Vignale [24]; the classical version of these modes for the Coulomb interaction was discussed
in detail by Schweigert and Peeters [25].

Figure 2. A schematic diagram showing a portion of the hyperangular�′ space. Two
symmetrically equivalent minima (SEMs—labelled as�′i ) are indicated by larger circles, while
nearby symmetrically inequivalent minima (SIMs—labelled as�′i;a) are indicated by smaller
circles.

2.1. The exact hyperangular equation for anyN

It remains to solve theB- andω0-independent hyperangular equation, which is given by[
22
N +

2m∗β
h̄2 V (�)

]
F(�) = [γ (γ + 2N − 4)]F(�) (6)

where

22
N ≡ −

∂2

∂α2
N

+ [2N − 6− (2N − 4) cos 2αN ]

sin 2αN

∂

∂αN
+ sec2 αN2

2
N−1− cosec2 αN

∂2

∂θ2
N

.

(7)
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The quantityV (�) is given by r2∑
i<j |ri − rj |−2, and only depends on hyperangular

coordinates� ≡ {θ;α}. We emphasize that this hyperangular equation (equation (6)) is
universal in that it is independent of the values of the magnetic field or confinement: solving
equation (6) forγ , and hence using equation (4), yields the complete solutions of theN -
electron HamiltonianH for all magnetic fields and confinement strengths. Unfortunately the
hyperangular equation does not admit exact solutions forγ . Sections 2.2–2.4 will consider
various approximations to equation (6) which make the problem tractable. BecauseJ

remains a good quantum number, we can introduce a Jacobi transformation of the relative-
motion angles{θi}: in particular,

θ ′ = 1

N − 1

N∑
j=2

θj (8)

and

θ[j ] =
[
j − 2

j − 1

]1/2[
θj − 1

j − 2
(θ2+ θ3+ · · · + θj−1)

]
(9)

wherej = 3, 4, . . . , N . We hence have oneθ ′-variable,(N − 2) θ[j ] -variables,(N − 2)
α-variables, and one hyperradiusr giving a total of 2N − 2 variables as required for the
relative motion. The exact eigenstates ofHrel have the formψ = eiJθ ′R(r)G(�′) where
�′ denotes the(2N − 4) {θ[j ];αj } variables excludingθ ′. The termV (�) is independent
of θ ′ and will hence be written asV (�′). It is useful to rewrite the eigenvalue of the
hyperangular equation in terms of a new variableε as follows:

ε = h̄
2

8

[
γ (γ + 2N − 4)− J 2− 2m∗β

h̄2 V (�′0)
]

(10)

whereV (�′0) is the value ofV (�′) evaluated at the hyperangles corresponding to a particular
classical, minimum-energyN -electron configuration (a Wigner molecule). Permuting
electron indices will provide a set{�′i} of symmetrically equivalent minima(SEMs) [22, 15]
with the same potential energyV (�′i ) ≡ V (�′0) for all i (e.g. �′0 and �′1 shown
schematically in figure 2). Such SEMs have the same topological structure, but cannot
be transformed into each other by rotations [22, 15]. As will be shown in section 2.2,
there are two such SEMs forN = 3. The quantityε in equation (10) accounts for the
contribution to the eigenvalue of the hyperangular equationwithout including either the
contributions from the rigid-body rotational energyJ 2 or the electrostatic potential energy
(2m∗β/h̄2)V (�′0) of the classical minimum-energy configuration. Physically therefore,ε

contains the zero-point energy in�′ space associated with the quantum mechanical spread
of G(�′) about the minima{�′i}. The actual spread inG(�′) and henceε will depend on
the total wavefunction antisymmetry requirement. This is illustrated forN = 3 in section
2.2, and discussed for largeN in sections 2.3, 2.4 and 3. In general,ε > 0, ε ∼ βµ

whereµ < 1, andε ∼ J δ where δ < 2; these statements will be illustrated in section
2.2 for N = 3. It is straightforward to show that the term(2m∗β/h̄2)V (�′0) appearing in
the definition ofε is identical to [Vclass/h̄ω0(B)]2, whereVclass is the potential energy of
the classical, minimum-energyN -electron configuration, thereby recovering the expression
given in reference [12]. Note thatVclass∝ β1/2ω0(B), and thatε (like γ ) is independent of
B andω0. The exact relative energy for anyN can now be written as

Erel = h̄ω0(B)

[
2n+

(
[N − 2]2+ J 2+ 2m∗β

h̄2 V (�′0)+
8ε

h̄2

)1/2

+ 1

]
+ J h̄ωc

2
. (11)

Erel only depends on particle statistics throughε. As h̄→ 0, ε → 0 andErel→ Vclass.
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The exactErel-expression has an important consequence. TheJ -dependence ofε is
weaker thanJ 2 asJ → 0. Hence the termJh̄ωc/2 in Erel will dominate theJ -dependence
of Erel for small J at fixed magnetic fieldωc. For states withJ < 0, Erel will hence
initially decrease as|J | increases. On the other hand at large negativeJ , Erel will tend to
h̄(ω0(B)− ωc/2)|J |, and hence will increase linearly with|J | at a givenωc. This implies
that Erel has aminimumat a finite negativeJ for a given fixed magnetic fieldωc. This
is the basic mechanism behind the tendency of anN -electron gas to form ground states at
increasingly largeJ -values as the magnetic field is increased. As will be shown in section
2.2 for N = 3 electrons, and in section 3 for largeN , only a subset of theseJ -minima
are permitted under the requirement of total wavefunction antisymmetry. TheseJ -values
are often called ‘magic-number’J -values in the context of few-electron quantum dots. In
section 3 we will show that the analogous ‘magic-number’J -states for a large-N electron
gas constitute FQHE and IQHE states. We emphasize that so far our results are exact for
any electron numberN , electron–electron interaction strengthβ, magnetic fieldωc, and
parabolic confinementω0.

Figure 3. A contour plot of the fictitious potentialV (x, y; ε) in the (x, y) plane for theN = 3
electron problem. The two symmetrically equivalent minima (SEMs—�′0 and�′1 from figure 1)
are shown. Minima inV (x, y; ε) occur at(0, 0) and(0,±π) (i.e. at the classical configurations).
Maxima occur at(ln

√
3,±π/2), whereV (x, y; ε) → ∞ (i.e. electrons 2 and 3 or 1 and 3

coincident). V (x, y; ε) is positive and finite everywhere else. The same qualitative features
appear for allε (ε/m∗β = 5 is used as an illustration).

2.2. The specific case ofN = 3

This case was studied in reference [12]. Here we will summarize the results since they are
important for understanding the general-N case. For convenience we change variables from
α, θ (cf. figure 1) tox, y wherex = ln[tan(π/2−α)] andy = θ−π/2. Since 06 α 6 π/2,
then−∞ 6 x 6∞ (NB: −π 6 y 6 π ). We definepx = (h̄/i)∂/∂x andpy = (h̄/i)∂/∂y.
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The exact hyperangular equation (equation (6)) now takes the form[
p2
x

2
+ (py + h̄J cos(2 tan−1 ex)/2)2

2
+ V (x, y; ε)

]
G(x, y) = εG(x, y) (12)

where

V (x, y; ε) = m∗β
[

(2+ cos(2 tan−1 ex)

(cosec(2 tan−1 ex)+ cot(tan−1 ex))2− 3 sin2 y
− 3

4
sin2(2 tan−1 ex)

+ 1

2
cos2(tan−1 ex)+ ε

m∗β
cos2(2 tan−1 ex)

]
. (13)

Equation (12) represents the single-body Hamiltonian for a fictitious particle of energyε and
unit mass, moving in thexy-plane in a non-linear (i.e.ε-dependent) potentialV (x, y; ε),
subject to a fictitious, non-uniform magnetic field in thez-direction:

Bfic = h̄J c
4e

[
1− cos(4(tan−1 ex))

]
. (14)

Bfic is independent ofB and has a maximum of ¯h|J |c/2e at x = 0 for all y. For
small x, Bfic ≈ (h̄J c/2e)(1 − x2). As x → ±∞, Bfic → 0. Note we have here
chosen to highlight the Schrödinger-like form of equation (12); a simple rearrangement
of equation (12) shows it to be hermitian with a weighting function sin2(2 tan−1 ex). These
results are exact so far. Figure 3 shows the potentialV (x, y; ε) in the (x, y) plane.
V (x, y; ε) > 0 everywhere. Minima occur at(0, 0) and (0,±π) whereV (x, y; ε) = 0
(NB (0, π) is equivalent to(0,−π)). Maxima occur at(ln

√
3,±π/2) in figure 3, where

V (x, y; ε) → ∞. Since ε > 0, these statements hold for anyε. We now discuss the
physical significance of these features. The classical configurations of minimum energy (the
Wigner molecule) correspond to the particles lying on a ring in the form of an equilateral
triangle with Vclass = ω0(B)[6m∗β]1/2. There are two distinct configurations, i.e. two
distinct symmetrically equivalent minima [22], with clockwise orderings�′0 ≡ (132) and
�′1 ≡ (123) corresponding to(α, θ) = (π/4,±π/2). In (x, y) coordinates, these correspond
to (0, 0) and (0, π) (equivalently,(0,−π)). Hence the classical configurations coincide
with the minima inV (x, y; ε) in figure 3 and the maximum inBfic. As pointed out in
reference [12], the formation of a Wigner molecule should therefore be favoured by both
largeBfic (i.e. large|J |) and deepV (x, y; ε) minima (i.e. large-β, strong electron–electron
interactions).

Consider the limit of very strong electron–electron interactions (i.e.β → ∞). Since
the height of the tunnel barrier between the twoV (x, y; ε) minima is∼β, the fictitious
particle sits at one of these minima and the system is locked in one of the two classical
configurations, e.g.�′0 ≡ (132) at (0, 0). The probability of tunnelling between the minima
�′0 and�′1 is zero. Tunnelling between the two minima implies a mixture of configuration
(123) into (132), and hence interchange of the original electrons; in many-body language,
exchange effects arising from wavefunction antisymmetry are therefore negligible.ε is
small compared tom∗β, and equation (12) reduces to

Erel = h̄ω0(B)

[
2n+

(
1+ J 2+ 6m∗β

h̄2

)1/2

+ 1

]
+ J h̄ωc

2
. (15)

The energyErel > Vclass, since it includes the hyperradial zero-point energy (NB ¯h → 0
yieldsErel→ Vclass andBfic → 0).

Next consider large but finiteβ. The fictitious particle now moves in the vicinity of
the minimum�′0 (i.e. (x, y) ≈ (0, 0)). The electrons in the Wigner solid are effectively
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vibrating around their classical positions. On expanding the potentialV (x, y; ε) about(0, 0)
to third order, the exact equation (12) becomes[

p2
x

2
+ (py − h̄J x/2)

2

2
+ 1

2
ω2
xx

2+ 1

2
ω2
yy

2

]
G(x, y) = εG(x, y) (16)

whereω2
x = 3m∗β/4 + 2ε and ω2

y = 3m∗β/4. This has the form of a single electron
moving in an anisotropic parabolic potential, subject to a uniform magnetic fieldBfic =
h̄J c/2e. Equation (16) is exactly solvable forε using a symmetric gauge [19] (the energies
are independent of the choice of gauge forBfic). As an illustration, we consider smallε,
and henceωx ≈ ωy . The relative energy is then given by

Erel = h̄ω0(B)

(
2n+

[
1+ J 2+ 6m∗β

h̄2 + 2(2n′ + |l|′ + 1)

×
(
J 2+ 12m∗β

h̄2

)1/2

+ 2l′J
]1/2

+ 1

)
+ J h̄ωc

2
. (17)

The fictitious particle has its own set of Fock–Darwin (and hence Landau) levels [23]
labelled byn′ and a fictitious angular momentuml′. For largeβ and smalln′, l′, andJ ,
equation (17) yields an oscillator excitation spectrum with two characteristic frequencies√

2h̄ω0(B) and 2h̄ω0(B) representing shear and breathing modes of the Wigner molecule.
For smallerβ (i.e. weaker interactions) and/or largerε (i.e. excited states), the tunnelling

probability between theV (x, y; ε) minima�′0 and�′1 in figure 3 becomes significant. The
Wigner molecule begins to melt, and wavefunction antisymmetry must be included. This
is discussed further in section 3. As mentioned in reference [12], the resulting analytically
obtained magic-numberJ -transitions are found to be in good agreement with the numerical
results for 1/r interaction. We note that the analytic results become more accurate in the
Wigner solid regime (e.g. largeβ or |J |), while the numerical calculations become more
computationally demanding.

2.3. Simplified hyperangular equations for arbitrarily largeN

For generalN , the hyperangular equation (equation (6)) is(2N−4)-dimensional. However,
in the Wigner solid regime (largeβ or |J |), the classical minimum-energy configurations
will still be important in determiningε and henceErel, just as forN = 3. Here we will
consider the limit in which the number of electrons is large (N � 1). This is the limit
of interest in the FQHE and in large quantum dots. Specifically, we will introduce in this
section a series of approximations in order to simplify the exact hyperangular equation.
At each stage, the corresponding simplified hyperangular equation is explicitly given.
The resulting discussion is detailed—however, we feel that this is necessary in order to
justify the successively simpler (and more approximate) hyperangular equations. Each of
these simplified hyperangular equations can be solved numerically; the complexity of the
algorithms needed obviously decreases as more approximations are introduced. However,
the goal in this paper is to obtain a simplified version of the hyperangular equation which
can be treated analytically, but which is still based on a set of reasonable approximations.

Figure 4 shows the classical ground-state configuration forN = 230 electrons (black
dots) in a parabolic quantum dot, as obtained by Bedanov and Peeters using a Monte Carlo
algorithm [14]. The rings are drawn as a guide to the eye. The numberN of electrons is
relatively small in the context of theN →∞ limit, and hence the details of the ground-state
configuration, particularly for larger rings, will be prone to edge effects. However, the inner
rings show a nearly hexagonal lattice as expected for theN →∞ limit. For the purposes
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Figure 4. The ground-state classical configuration for 230 electrons (black dots) calculated
numerically using a Monte Carlo simulation. This figure was adapted from figure 2 of Bedanov
and Peeters (reference [14]). Straight lines are drawn to bisect the midpoint between nearest-
neighbour electrons, thereby highlighting the approximately hexagonal local symmetry. Circles
are drawn to illustrate the approximately ring-like arrangement of electrons. The inner circles
only pass through regular hexagons. The outer circle passes through several pentagons and
distorted hexagons because of its proximity to the edge of the finite cluster.

Figure 5. A particular symmetrically equivalent minimum (SEM—labelled in the text as�′0)
with N near the centre (cf. figure 4). We are considering the limit of largeN . Ringm is such
thatN � j � 1, and it is therefore far away from the circumference of the cluster.

of illustration we will therefore consider figure 4 as being representative of theN → ∞
classical configuration. Consider theparticular classical configuration�′0 where theN th
electron is near the centre and the first electron is on the circumference of the droplet. This
is shown schematically in figure 5. As discussed in section 2.2 forN = 3, the fully quantum
mechanical system will also lie near this configuration in�′ space in the limit of very large
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β. The j th Jacobi coordinate is given by

Xj =
[
j − 1

j

]1/2

(rj −Rj−1) (18)

where

Rj−1 = 1

j − 1
(r1+ r2+ · · · + rj−1)

(this quantityRj−1 can be thought of as the ‘centre of mass’ of the electrons 1, 2, . . . , j − 1).
For j � 1, and for configurations like those in figures 4 and 5 where the electrons are
evenly distributed around the origin, the quantityRj−1 will be small compared to the
typical electron lattice spacing. In addition, the prefactor [(j − 1)/j ]1/2 → 1 for large
j . HenceXj → rj for large j . However, there is an exact identity for hyperangular
Jacobi coordinates:

∑N
j=2[Xj/r]2 = 1. Given thatXj → 0 asj → N for largeN , this

implies that each term [Xj/r]2 � 1 for largej . Given the definition of the hyperangular
coordinates stated earlier on, it follows that the hyperanglesαj � 1 for j � 1. Hence
to first order inαj , we can make the approximationXN = r sinαN ≈ rαN . Similarly
XN−1 = r cosαN sinαN−1 ≈ rαN−1, and, more generally,Xj ≈ rαj . To summarize, for
configurations similar to that shown in figure 5, we have the approximate resultXj ≈ rαjeiθj

in theN � 1 andj � 1 limit. There are two points to note: although we need bothj � 1
andN � 1, j can still be an order of magnitude less thanN . Second, the error introduced by
assuming sinαj ≈ αj is still reasonably small even forj = 2 (recall thatα2 = π/2≈ 1.57,
as compared to sinα2 = 1. To remain consistent within our approximation, we will take
α2 = 1 instead ofπ/2 in what follows).

This approximate form forXj leads to an interesting simplification of the exact
hyperangular equation. The small-angle (i.e.αj � 1) limit of equation (6) yields[ N∑

j=2

− h̄2

2m∗
∇2
j + βV (�)

]
F(�) = h̄2

2m∗
γ (γ + 2N − 4)F (�) (19)

where

∇2
j ≡ −

∂2

∂α2
j

− 1

αj

∂

∂αj
− 1

α2
j

∂2

∂θ2
j

(20)

is the two-dimensional Laplacian for a fictitious particle with position(αj , θj ) in polar
coordinates, the potential energy term

V (�) ≡ V (�′) ∼
∑
j<j ′
|αjeiθj − αj ′eiθj ′ |−2 (21)

andF(�) = eiJθ ′G(�′). This equation is a good approximation forj → N with N � 1, but
becomes worse asj → 0 and/orN → 0. (Recall thatα2 = 1, and hence the sum can start
from j = 2 as shown.) However, this is sufficient for the purposes of this paper, since we are
interested in states that evolve within the bulk of theN -electron droplet as opposed to those
at the edge. Physically, equation (19) describes a set ofN − 1 fictitious particles moving
on a two-dimensional plane subject to a two-body inverse-square interaction, in theabsence
of a magnetic field. It is interesting to note that this transformation of having replaced an
N -particle problem in a magnetic field with an(N−1)-particle problem without a magnetic
field seems reminiscent of composite-fermion constructions at half-integer filling fractions.
The effective Schr̈odinger equation in equation (19) carries the following constraint: the
exact hyperangular identity

∑N
j=2[Xj/r]2 = 1 implies that

∑
α2
j ∼ 1. This may complicate
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any attempt at a solution using a ‘renormalization’ type of approach, such as the setting up
of a recursion equation relatingγ for N particles toγ for N − 1 particles.

It is more useful to view equation (19) in the context of a single fictitious particle
moving in a multi-dimensional space containing potential minima corresponding to the
various classical minimum-energy configurations{�′i}. This directly connects theN -electron
problem to theN = 3 problem discussed in section 2.2. As discussed in section 2.1, a
Jacobi transformation can be undertaken on the{θj } variables. In particular,

θ[j ] =
[
j − 2

j − 1

]1/2

(θj −2j−1) (22)

wherej = 3, 4, . . . , N and

2j−1 = 1

j − 2
(θ2+ θ3+ · · · + θj−1).

The quantity2j−1 represents the average of the anglesθj , wherej = 2, 3, . . . , j − 1. For
j � 1, the quantity2j−1 will be approximately a constant,̄2, since thej − 1 particles
are evenly distributed about the origin in a given�′i configuration (recall figures 4 and 5).
In addition, the prefactor [(j − 2)/(j − 1)]1/2 → 1 for largej . Henceθ[j ] → θj − 2̄ for
large j , neglecting terms of order(1/N). With F(�) = eiJθ ′G(�′), equation (19) further
reduces to[ N∑
j=3

− h̄2

2m∗

(
∂2

∂α2
j

+ 1

αj

∂

∂αj
+ 1

α2
j

[
∂

∂θ[j ]
+ iJ

N − 1

]2)
+ βV (�′)

]
G(�′)

= h̄2

2m∗
γ (γ + 2N − 4)G(�′). (23)

Again this equation is a good approximation forj → N , but becomes worse asj → 0.
The {θ[j ];αj } manifold carries the following constraints:

∑
α2
j ∼ 1 and

∑
∂/∂θ[j ] ∼ 0.

The latter condition is an approximate identity for largeN , and is obtained by combining∑ ∂

∂θj
= ∂

∂θ ′

(this is an exact property of any Jacobi transformation) and

∂

∂θj
∼ ∂

∂θ[j ]
+ 1

N − 1

∂

∂θ ′
.

This new condition hence reflects the fact that the total relative angular momentum is only
associated with theθ ′-variable; there is no additional contribution to the relative angular
momentum contained within the�′ dynamics. These approximate constraints allow us to
make a further simplification of the hyperangular equation as follows. Using the approximate
identity

∑
α2
j ∼ 1, we can define an average hyperangleᾱ ∼ N−1/2. We will therefore

replace the term∑ 1

α2
j

J 2

(N − 1)2

in equation (23) by

1

ᾱ2

∑ J 2

(N − 1)2
∼ J 2
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assuming largeN . We can hence rewrite equation (23) in the form[ N∑
j=3

− h̄2

2m∗

(
∂2

∂α2
j

+ 1

αj

∂

∂αj
+ 1

α2
j

[
∂2

∂θ2
[j ]

+ 2iJ

N − 1

∂

∂θ[j ]

])
+ β[V (�′)− V (�′0)]

]
G(�′)

= h̄2

2m∗

[
γ (γ + 2N − 4)− J 2− 2m∗β

h̄2 V (�′0)
]
G(�′). (24)

Although its derivation has involved approximations, equation (24) merits some discussion
since it elucidates several of the statements made in section 2.1. The right-hand side is just
(4/m∗)ε. Given that

∑
α2
j ∼ 1 and

∑
∂/∂θ[j ] ∼ 0, theJ -dependence ofε will tend to be

weaker thanJ 2 as claimed earlier. Note that since
∑
α2
j ∼ 1, the moment of inertiaI of

a given classical configuration in� space, treated as a rigid body, is justm∗. Hence the
classical rigid-body rotational energy ¯h2J 2/2I ∼ h̄2J 2/2m∗, which is precisely the term
appearing in the right-hand side of equation (24). This then justifies the statement made
in section 2.1 thatε excludes the classical rigid-body rotational energy. The termV (�′0)
denotesV (�′) evaluated at a given classical SEM equilibrium configuration�′ ≡ �′0. We
emphasize thatV (�′0) ≡ V (�′i ), i.e. the potential energy is the same for all SEMs. Since
�′0 is a minimum, the difference term [V (�′)− V (�′0)] can be expanded around�′0. The
leading terms will be quadratic inθ[j ] − θ[j0] etc. Henceε does indeed describe the zero-
point energy associated with the spread inG(�′) around the classical minima, as claimed
in section 2.1 and shown explicitly forN = 3 in section 2.2. This point is further discussed
below for largeN .

The hyperangular equation, equation (24), is now simpler; however, it is still not quite
in a form which makes it amenable to analytic calculation. This final step can be achieved
via the following considerations. Given the two approximate constraints

∑
α2
j ∼ 1 and∑

∂/∂θ[j ] ∼ 0, the term involving
∑
(1/α2

j )∂/∂θ[j ] should be small as compared to the term
involving (1/α2

j )∂
2/∂θ2

[j ] , and hence will be neglected. Furthermore, just as forN = 3, we
are initially considering the quantum mechanical solution near a given classical minimum
�′0, i.e. β →∞. Hence the term(1/α2

j )∂
2/∂θ2

[j ] can be approximated by(1/α2
j0)∂

2/∂θ2
[j ] ,

whereαj0 is the value ofαj at �′ ≡ �′0. The fact that�′0 is a minimum suggests that
the leading-order expansion of [V (�′)− V (�′0)] will involve terms like (θ[j ] − θ[j0])

2 and
(αj − αj0)

2 for all j , but not cross terms; this was demonstrated explicitly forN = 3
earlier, whereV (x, y) was found to be a function ofx2 andy2 but notxy. This implies the
following simplification for�′ ∼ �′0: [V (�′)−V (�′0)] ∼

∑
j [v(αj −αj0)+w(θ[j ]− θ[j0])]

where bothv andw have a minimum at�′ ≡ �′0, i.e. atαj = αj0 and θ[j ] = θ[j0]. The
approximate separability of the potential suggests that the hyperangular functionG(�′) can
now be written asf ({αj − αj0})g({θ[j ] − θ[j0]}) where the functionsf and g are peaked
around�′ ≡ �′0. This was shown to be true explicitly forN = 3, wheref andg turned out
to be gaussians (harmonic oscillator wavefunctions). Since�′0 is still a minimum point for
largeN , f andg will retain their gaussian-like character for generalN . We will therefore
write

g({θ[j ] − θ[j0]}) ∼
∏
j

gj (θ[j ] − θ[j0])

wheregj (θ[j ] − θ[j0]) is a function peaked around the minimum coordinateθ[j ] = θ[j0]. The
hyperangular equation is now fully separable into an equation involving{αj }:[ N∑
j=3

− h̄2

2m∗

(
∂2

∂α2
j

+ 1

αj

∂

∂αj

)
+ βvj (αj − αj0)

]
f ({αj − αj0}) = Eαf ({αj − αj0}) (25)
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together with the following equations for eachθ[j ] :[
− h̄2

2m∗α2
j0

∂2

∂θ2
[j ]

+ βwj(θ[j ] − θ[j0])

]
gj (θ[j ] − θ[j0]) = ejgj (θ[j ] − θ[j0]). (26)

The relation betweenε, Eα, andej is as follows: (4/m∗)ε = Eθ + Eα whereEθ =
∑
j ej .

The full expression for the relative energy hence becomes

Erel = h̄ω0(B)

[
2n+

(
[N − 2]2+ J 2+ 2m∗β

h̄2 V (�′0)+
2m∗

h̄2 [Eθ + Eα]

)1/2

+ 1

]
+ J h̄ωc

2
.

(27)

Since equations (25) and (26) have a Schrödinger-like form withEα andej as eigenvalues
respectively, we will refer to these two quantities as ‘energies’ even though this is not
strictly correct terminology.

2.4. Characteristics of the low-energy solutionsG(�′)

So far we have considered the solutions near a particular minimum configuration�′0, i.e. we
have considered very largeβ just as we did initially forN = 3. Very largeβ implies that
G(�′) will be peaked around one of the SEMs, e.g. around�′0. In the limit of zero
tunnelling between SEMs, the solutionG(�′) ∼ f ({αj − αj0})g({θ[j ] − θ[j0]}) centred at
�′0 will be degeneratewith the identically localized solutions centred at all other SEMs
{�′i}. These localized functions can be thought of as atomic-like orbitals in�′ space. In
particular there will be a set of orbitals associated with each SEM�′i . The corresponding
coordinates and hyperangular equations describing these solutions are identical to those
obtained earlier in section 2.3; however, the spatial ordering of the electrons for the various
�′i minima will necessarily change; for example, electronN will not necessarily be close to
the centre. Using the usual variational argument for Schrödinger-like equations, the lowest-
energy (i.e. lowest-Eα and lowest-Eθ ) solutions of equations (26) and (27) will be those
with the minimum number of nodes.

For large but finiteβ, there will be a small but finite tunnelling between the various
minima {�′i}, and hence the complete solutionG(�′) will be more correctly described as
a linear combination of the atomic-like solutions, just like in a single-particle tight-binding
model. Furthermore, forN > 6, as noted earlier, there will be additional classical minima
which are not topologically equivalent; again borrowing from the language of molecular
physics [15, 22] these minima are termedsymmetrically inequivalent minima(SIMs). These
SIMs are local minima in�′ space which are often just slightly higher in energy than the
SEMs {�i}. In the large-N limit, these minima correspond to defect states in a hexagonal
crystal. Fisher, Halperin and Morf [26] showed that a Wigner crystal with a localized defect
(WXD) can be quite close in energy to the perfect Wigner crystal (WX). This finding was
recently verified in the context ofN electrons in a two-dimensional parabolic quantum
dot by Bolton and Rossler [13] and Bedanov and Peeters [14]. These authors all found
that the global minimum for the classicalN -electron system tends towards a hexagonal
crystal asN → ∞, as expected for the Wigner crystal (WX). However, configurations
corresponding to a Wigner crystal with single defects (WXD) are only slightly higher in
energy. In the language of the present paper, the WX represents the SEMs while the WXD
represents the SIMs. Although the SIMs are not true global minima, the complete solution
G(�′) should certainly include finite mixing with them. This is particularly true since the
‘nearest neighbours’ of a given SEM in�′ space are SIMs. This is simply a consequence
of the fact that translation between two adjacent SEMs in�′ space requires interchange
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of at least two electrons, while translation between a given SEM and its nearest SIMs
requires only slight electron distortion. Each SEM minimum�i will have p defect states
as its nearest neighbours in�′ space—we denote these nearby SIM minima as{�′i;a} where
a = 1, 2, . . . , p (cf. figure 2).

The resulting wavefunctionG(�′) will therefore resemble a tight-binding LCMO (linear
combination of molecular orbitals) wavefunction, where each ‘molecule’ consists of ‘atomic’
orbitals on one of the SEM minima�i mixed with ‘atomic’ orbitals on each of its nearby
SIM minima. We emphasize thatN = 3 has no SIM minima.N = 6 is the smallestN
having SIMs. The SIMs forN = 6 consist of a six-member ring configuration while the
SEMs contain a five-member ring plus one electron at the centre [13, 14]. For generalN ,
the low-energy solutions should therefore be reasonably well described by

G(�′) ∼
SEM∑
i

SIM∑
a

ci;af ({αj − αji;a})g({θ[j ] − θ[ji;a]}). (28)

It is well known from elementary tight-binding theory that the lowest-energy states are
‘bonding’ wavefunctions of s orbitals. In the present context, we similarly expect the
lowest energyG(�′) to have as few nodes as possible (i.e. it will be gaussian-like around
each of the SEM{�′i}, thereby resembling an s orbital); it will also correspond to the
coefficientsci;a being identical for eachi (i.e. it will resemble a ‘bonding’ state).

3. Fermion statistics, magic numbers, and filling fractions

So far we have not introduced the requirement that the totalN -electron wavefunction be
antisymmetric. In this section, we will show that it is precisely this requirement that
produces the observed FQHE filling factors for largeN .

It is useful to first discuss the effect of antisymmetry in the case ofN = 3 electrons
before considering largeN . For three spin-polarized electrons,ψ must be antisymmetric
under particle interchangei ↔ j . The hyperradial partR(r) is invariant; particle
permutation operations in(r1, r2, r3) become straightforwardspace-groupoperations in
the (x, y) plane. For small(x, y), 1 ↔ 2 is equivalent to(x, y) → (x, y + π) with
θ ′ → θ ′ + π/2; 1↔ 3 is equivalent to(x, y) → (x̄, ȳ − π) with θ ′ → θ ′ + π/6 ((x̄, ȳ)
represents(x, y) rotated by 4π/3); 2 ↔ 3 is equivalent to(x, y) → (x̃, ỹ + π) with
θ ′ → θ ′ − π/6 ((x̃, ỹ) represents(x, y) rotated by−4π/3). The solutionsG(x, y) of
equation (12) with the lowest possibleε, and hence the lowestErel at a givenωc, should
be nodeless in the vicinity of(0, 0) (cf. the ground state in the parabolic potential with
n′ = 0 = l′ in equation (17)). However, the above symmetry requirements forbid such
a nodeless solution unless eiπ 2J/3 = 1. Therefore the only symmetry-allowed solutions
G(x, y) which are nodeless are those whereJ is a multiple of three, as observed in
numerical calculations forN = 3 electrons with a 1/r interaction. It is important to
note that this condition, i.e. eiπ 2J/3 = 1, just arises from combining the effect of any
two sets of particle interchangesi ↔ j . For N = 3, two sets of particle interchanges
correspond to rotations of a given SEM; this can be seen simply as follows. Consider a
given SEM in figure 3, e.g.�′0 ≡ (132). Interchanging 1↔ 2 and 2↔ 3 yields thesame
SEM, i.e. (132), rotated anticlockwise by 2π/3. Hence combinations of two sets of particle
interchanges merely rotate the Wigner molecule without involving a transformation from
one SEM to another, i.e. without moving from (132) to (123). Hence in order to obtain
the ‘magic’ angular momentum values forN = 3, it is sufficient to consider the subset
of particle interchanges from the S3 permutation group which correspond to point-group
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rotations C3, i.e. those which do not correspond to translations between SEMs. This result
is discussed by Maksym in reference [15] following earlier work on molecules by Wilson
[22]. Maksym also argued that forN = 3 the remaining permutations which correspond to
translations between SEMs, and hence the effect of tunnelling between SEMs, represents
a small perturbation which does not affect the magicJ -values. In contrast, forN = 6,
where topologically distinct classical configurations coexist, the tunnelling between SEMs
and SIMs plays a crucial role in determining theJ -values of the low-energy ground states
of the system. In particular, Maksym pointed out that tunnelling between SEMs and SIMs
should be most favourable when the SEM and SIM configurations have a commonJ -value.
This is consistent with analogous ideas in single-particle tight-binding theory, where the
overlap matrix element (and hence the bandwidth) is larger between s orbitals than between
s and p orbitals. Maksym conjectured that the resulting tunnelling might lead to ‘liquid’-like
states with a lower overall energy.

These considerations motivate us to follow a similar strategy forN electrons. In
particular, we will show that considering just a subset of particle interchanges ofSN
corresponding to rotations of rings within the Wigner molecule (WX) and Wigner molecule
plus defect (WXD) issufficient to determine the magicJ -values corresponding to the
observed FQHE filling factors. As forN = 3, we focus on the vicinity of a given SEM,
e.g. �′0. Following the discussion in section 2.3, interchangingri ↔ rj is relatively
straightforward fori, j � 1 sinceXj ≈ rαjeiθj ∼ rj . Neglecting terms of order(1/N),
it just corresponds toαi ↔ αj and θi ↔ θj . The derivation of the transformation rules,
including terms of order(1/N), is straightforward but tedious. Just as forN = 3, however,
it turns out in what follows that we do not need to consider individuali ↔ j transformations.

3.1. The spin-polarized system

Consider the classical configuration�′0 shown in figures 4 and 5. For largej the electrons
can be thought of as forming an approximately ring-like structure. Counting the number
of rings from the centre outwards, the first ring contains 6 electrons, the second contains
approximately 12 and so on. We first focus on a ‘typical’ ring without any defects; it will
contain a large, even numberNm of electrons (approximately 6m electrons where 6m� 1),
but these electrons will have an indexj � 1, i.e. we are not considering rings near the edge
of theN -electron droplet. We are going to consider just the subset of all particle interchanges
i ↔ j which are equivalent to rotations of thismth ring. SinceXj ≈ rαjeiθj ∼ rj , all
members of the ring have approximately the sameα, i.e. {αj } ≡ αm for all j in ring m.
Hence interchanging two members of the ring just involves a transformation between their
θj -coordinates. Since all members of the ring have a similar environment and the sameαj ,
the potential energywj and hencegj in equation (26) will have the same form for allj in the
ringm. As forN = 3, the lowest-energy solutions should be those withgj nodeless;gj will
be an approximately gaussian function ofθ[j ] centred atθ[j0]. Hence we can writegj ≡ gm
for all j in ring m. We now rotate the electrons in the ring, and hence the ring itself, by an
angle 2π/Nm. SinceXj ∼ rj this corresponds toθj → θj + 2π/Nm. Thegm functions are
nodeless and (in a given ring) identical, and hence the product

∏
j gj (θ[j ] − θ[j0]) for j in

ring m can be replaced by
∏
j gm(θ[j ] − θ[j0]). The transformation keeps the system within

the subset of all SEMs corresponding to the same ring ordering, i.e. just as forN = 3 the
rotation operation in real space becomes a space-group operation in�′ space which translates
the system between SEMs. Recall thatG(�′) for minimum-energy states should resemble a
‘bonding’ linear combination of s-like orbitals (i.e. an approximately gaussianθ -dependence
around the various SEMs (equation (28))). The coefficientsci;a in the expression forG(�′)
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in equation (28) will therefore be identical for all of the SEM minima{�′i} corresponding
to this same ring ordering. SinceG(�′) corresponds to a linear combination of identical
orbitals with the same coefficient, the overall effect of the transformation onG(�′) due to
ring rotation will be quite small; we simply move between this subset of SEMs{�′i}, each
of which has the same local orbitals. In contrast, the effect on theθ ′-variable is relatively
important; it follows from equation (8) thatθj → θj+2π/Nm corresponds toθ ′ → θ ′+1θ ′,
where

1θ ′ = Nm 2π

Nm(N − 1)
= 2π

(N − 1)
.

The total functionF(�) = eiJθ ′G(�′) hence becomes eiJ1θ ′F(�). Given thatNm is an
even number, rotation of themth ring by 2π/Nm necessarily corresponds to an odd number
of interchangesi ↔ j . If we assume that the electrons arespin polarized, the spatial part
of theN -electron wavefunction must be totally antisymmetric, and hence the overall phase
change must equal eiπ(2n+1) where n is any integer. Denoting theJ -value asJWX, we
therefore obtain the condition

JWX = 1

2
(N − 1)(2n+ 1). (29)

Importantly, this criterion forJWX is independentof m, and hence holds for all rings
m. In other words, this criterion guarantees that theN -electron wavefunction has the
correct permutational symmetry under the subset of all permutations ofN electrons which
correspond to ring rotations. Note thatJWX must be an integer.

Now consider the Wigner crystal plus defect (WXD). Fisher, Halperin and Morf [26]
showed that the lowest-energy defect states correspond to interstitial defects, i.e. an extra
electron sits on an interstitial site in the otherwise perfect crystal. Single vacancies have
a higher energy. Following Fisheret al, there are two types of interstitial site, ‘centred’
and ‘edge’ interstitials, and these are by far the most predominant type of defect at finite
temperatures. In our model, these defects can be created by introducing an(N + 1)th
electron which forms the defect. There are several reasons for this being reasonable. First,
the alternative scheme of allowing one of theN existing electrons to form the defect
would create an interstitialplus vacancy; following Fisheret al the total energy of such
a defect is approximately three times larger than a single interstitial. Second, creation
of such an interstitial–vacancy pair would involve a transformation of bothθ - and α-
coordinates within theN -electron� space. Third, the definition of theθ[j ] -variables (see
equation (9)) is independent of the coordinates of electronN + 1. Hence theN -electron
�′ coordinate system is essentially unchanged by the presence of the extra electron. The
hyperangular functionG(�′) for theN -electron system can therefore be compared directly
to the corresponding hyperangular function for the(N +1)-electron system when projected
onto theN -electron�′ space. We wish to consider the effect of this defect on ringm.
Following Fisheret al [26], the distortion of the crystal will be well localized around the
defect. In terms of the hyperangular coordinates, part of the local crystal distortion will be
subsumed in the coordinater, and the effect on the hyperanglesα andθ of the electrons in
ring m will be relatively small unless the defect lies in ringm. Assume that the defect lies
in ring m = md . The antisymmetry condition obtained above for the perfect crystal (JWX)
will still be approximately valid for all rings withm 6= md . In ring md , there are now an
odd number of electronsNm + 1. The rotationθj → θj + 2π/(Nm + 1) now corresponds
to θ ′ → θ ′ +1θ ′ where

1θ ′ = (Nm + 1)
2π

(Nm + 1)N
= 2π

N
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(NB we now have an(N + 1)-electron system). Because of the odd-member ring, rotation
corresponds to an even number ofi ↔ j interchanges. The hyperangular function for the
(N + 1)-electron system of crystal plus defect, when projected onto the originalN -electron
�′ space, is essentially unchanged—the originalN electrons are only slightly distorted by
the presence of the defect. Hence the overall phase change eiJ1θ ′ must equal ei2πn

′
, where

n′ is any integer. Denoting theJ -value asJWXD, we therefore obtain the condition

JWXD = Nn′. (30)

Again, this criterion forJWXD is independentof m, and hence holds for a single defect
located in any ringm. Also, JWXD must be an integer. These two criteria, taken together,
therefore guarantee that theN -electron wavefunction has the correct permutational symmetry
under the subset of all permutations ofN electrons which correspond to ring rotations, both
for the perfect crystal (WX)and the crystal plus defect (WXD). For the perfect crystal, we
can considerN to be odd since each ring contains an even number of electrons, plus there
is one electron at the centre. Combining the two conditions forJWX andJWXD, we hence
see that the WX and WXD have the following commonJ -values:

Jm = 1

2
N(N − 1)(2n+ 1) (31)

wheren is any integer. Converting theseJm-values into filling factors using the formula
ν = N(N − 1)/2Jm, which is valid for largeN , yields

ν = 1

2n+ 1
. (32)

This coincides with the principal series of FQHE fractions, i.e.1
3 and 1

5. The valueν = 1
will be discussed below. As an illustration we consider the case ofN = 201 electrons.
The allowedJWX-values are 100× 1, 100× 3, 100× 5, etc, while the allowedJWXD-
values are 201× 1, 201× 2, 201× 3, etc. It is clear that commonJ -values are given by
Jm = 100× 201× 1, 100× 201× 3, etc, and henceν = 1

3,
1
5.

3.2. The spin-unpolarized system

We have so far generated theJm-values for a system of spin-polarized particles. Next
we consider the opposite limit of a spin-unpolarized system, i.e.N+ = N− where
N = N+ + N−, andN must therefore be an even number. The arguments will be more
approximate in this case, but we believe will still contain the essential physics. Consider a
‘typical’ ring as before. Let this ring,m, containNm electrons whereNm � 1; the ring will
typically haveNm/2 up-spins andNm/2 down-spins. Due to the Pauli principal keeping like
spins apart, we will assume that on the average the ordering corresponds to the alternating
sequence up-spin–down-spin repeated around the ring (see figure 6(a)). Rotation of the ring
to a topologically identical configuration now involves a rotation of all of the electrons in
the ring by an angle 2π/(Nm/2), i.e. we have to rotate through twice 2π/Nm. The rotation
θj → θj + 2π/(Nm/2) corresponds toθ ′ → θ ′ +1θ ′ where

1θ ′ = Nm 2π

(Nm/2)(N − 1)
= 4π

(N − 1)
.

SinceNm is an even number,Nm/2 can either be odd or even. Rotation of themth ring
by 4π/Nm therefore corresponds to either an even or odd number of interchangesi ↔ j

for both spin-up and spin-down electrons. Hence the total number of interchanges oflike
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Figure 6. A typical ring m for the various spin polarizations. Although only 12 particles are
shown for clarity, the ring is assumed to contain a large number, i.e.Nm � 1 sincem � 1.
(a)N+:N− = 1:1. (b)N+:N− = 2:1. (c)N+:N− = 3:1.

spins is always even. The overall phase change must therefore equal ei2πn wheren is any
integer. Denoting theJ -value asJWX we therefore obtain the condition

JWX = 1

2
(N − 1)n. (33)

Again this criterion forJWX is independent ofm, and hence holds for all ringsm. Now
consider the Wigner crystal plus defect (WXD) with the defect in ringm. The defect
corresponds to an extra electron which can either be spin-up or spin-down. There are now
an odd number of electrons,Nm + 1. We now have, for largeNm, that

1θ ′ ≈ 2(Nm + 1)
2π

(Nm + 1)N
= 4π

N

for theN + 1 electron system. Because of the odd-member ring, rotation now corresponds
to an overallodd number of i ↔ j interchanges. This is because either the spin-up
interchanges are odd while the spin-down ones are even, or vice versa. Hence the overall
phase change eiJ1θ ′ must equal eiπ(2n

′+1), wheren′ is any integer. Denoting theJ -value as
JWXD, we therefore obtain the condition

JWXD = 1

2
N

(
n′ + 1

2

)
. (34)

Again, this criterion forJWXD is independent ofm. These two criteria, taken together,
therefore guarantee that the spin-unpolarizedN -electron wavefunction has the correct
permutational symmetry under the subset of all permutations ofN electrons which
correspond to ring rotations, both for the perfect crystal (WX)and the crystal plus defect
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(WXD). Combining the two conditions for integer values ofJWX andJWXD, we hence see
that the WX and WXD have the following commonJ -values:

Jm = 1

4
N(N − 1)(2n+ 1) (35)

wheren is any integer. Converting theseJm-values into filling factors yields

ν = 2

2n+ 1
. (36)

This coincides with the second series of FQHE fractions, i.e.2
3, 2

5, 2
7, etc, and hence suggests

that the ground states at these fractions will be spin unpolarized in the absence of Zeeman
energy, in agreement with earlier finite-size numerical calculations (see p 63 of reference
[3]). Interestingly the series also reproduces the IQHE valueν = 2. As an illustration we
consider the case ofN = 200 electrons. The allowedJWX-values are 199× 1, 199× 2,
199× 3, etc, while the allowedJWXD-values are 50× 1, 50× 3, 50× 5, etc. Common
J -values are given byJm = 199× 50× 1, 199× 50× 3, etc, and henceν = 2

3,
2
5, etc.

3.3. The partially spin-polarized system

Consider a partially spin-polarized system. First we will takeN+ = 3N−, where
N = N+ + N− and N is again even. Consider a ‘typical’ ring as before. Let this
ring, m, containNm electrons whereNm � 1; the ring will typically have 3Nm/4 up-
spins andNm/4 down-spins. Due to the Pauli principle keeping like spins apart, we will
now assume that on average the ordering corresponds to the sequence up-spin–up-spin–
up-spin–down-spin repeated around the ring (see figure 6(c)). Rotation of the ring to a
topologically identical configuration now involves a rotation of all of the electrons in the
ring by an angle 2π/(Nm/4), i.e. we have to rotate through four times 2π/Nm. The rotation
θj → θj + 2π/(Nm/4) corresponds toθ ′ → θ ′ +1θ ′, where

1θ ′ = Nm 2π

(Nm/4)(N − 1)
= 8π

(N − 1)
.

SinceNm is an even number, 3Nm/4 andNm/4 are either both odd or both even. Rotation
of the mth ring by 8π/Nm therefore corresponds to either an even or odd number of
interchangesi ↔ j for both spin-up and spin-down electrons. Hence the total number
of interchanges oflike spins is always even. The overall phase change must therefore
equal ei2πn, wheren is any integer. Denoting theJ -value asJWX, we therefore obtain the
condition

JWX = 1

4
(N − 1)n. (37)

Again this criterion forJWX is independent ofm, and hence holds for all ringsm. Now
consider the Wigner crystal plus defect (WXD) with the defect in ringm. The defect can
either be spin-up or spin-down. There are now anodd number of electronsNm + 1. We
now have, for largeNm, that

1θ ′ ≈ 4(Nm + 1)
2π

(Nm + 1)N
= 8π

N

for the(N+1)-electron system. Because of the odd-member ring, rotation now corresponds
to an overallodd number of i ↔ j interchanges. This is because either the spin-up
interchanges are odd while the spin-down ones are even, or vice versa. Hence the overall
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phase change eiJ1θ ′ must equal eiπ(2n
′+1), wheren′ is any integer. Denoting theJ -value as

JWXD, we therefore obtain the condition

JWXD = 1

4
N

(
n′ + 1

2

)
. (38)

Again, this criterion forJWXD is independent ofm. These two criteria, taken together,
therefore guarantee that the partially spin-polarizedN -electron wavefunction has the
correct permutational symmetry under the subset of all permutations ofN electrons which
correspond to ring rotations, both for the perfect crystal (WX)and the crystal plus defect
(WXD). Combining the two conditions for integer values ofJWX andJWXD, we hence see
that the WX and WXD have the following commonJ -values:

Jm = 1

8
N(N − 1)(2n+ 1) (39)

wheren is any integer. Converting theseJm-values into filling factors yields

ν = 4

2n+ 1
. (40)

This coincides with the fourth series of FQHE fractions, i.e.4
5, 4

7, etc, and hence the
theory suggests that the corresponding ground states at these fractions will be partially spin
polarized in the ratio of spin-up to spin-down of 3:1 in the absence of Zeeman energy.
Again this is in agreement with finite-size numerical calculations (see p 63 of reference
[3]). As an illustration we again consider the case ofN = 200 electrons (NB we have 4
as a factor since the ratio of spin-up to spin-down is 3:1). The allowedJWX-values are
199× 1, 199× 2, 199× 3, etc, while the allowedJWXD-values are 25× 1, 25× 3, 25× 5,
etc. CommonJ -values are given byJm = 199× 25× 1, 199× 25× 3, etc, and hence
ν = 4

5,
4
7, etc.

Next we takeN+ = 2N−, whereN = N+ + N− and N is again even. Consider
a ‘typical’ ring as before. Let this ring,m, containNm electrons whereNm � 1; the
ring will typically have 2Nm/3 up-spins andNm/3 down-spins. Due to the Pauli principle
keeping like spins apart, we will assume that on average the sequence corresponds to up-
spin–up-spin–down-spin repeated around the ring (see figure 6(b)). Rotation of the ring
to a topologically identical configuration now involves a rotation of all of the electrons in
the ring by an angle 2π/(Nm/3), i.e. we have to rotate through three times 2π/Nm. The
rotationθj → θj + 2π/(Nm/3) corresponds toθ ′ → θ ′ +1θ ′, where

1θ ′ = Nm 2π

(Nm/3)(N − 1)
= 6π

(N − 1)
.

SinceNm is an even number, 2Nm/3 andNm/3 are either both odd or both even. Rotation
of the mth ring by 6π/Nm therefore corresponds to either an even or an odd number of
interchangesi ↔ j for both spin-up and spin-down electrons. Hence the total number
of interchanges oflike spins is always even. The overall phase change must therefore
equal ei2πn, wheren is any integer. Denoting theJ -value asJWX, we therefore obtain the
condition

JWX = 1

3
(N − 1)n. (41)

Again this criterion forJWX is independent ofm, and hence holds for all ringsm. Now
consider the Wigner crystal plus defect (WXD) with the defect in ringm. The defect can
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either be spin-up or spin-down. There are now anodd number of electronsNm + 1. We
now have, for largeNm, that

1θ ′ ≈ 3(Nm + 1)
2π

(Nm + 1)N
= 6π

N

for the(N+1)-electron system. Because of the odd-member ring, rotation now corresponds
to an overallodd number of i ↔ j interchanges. This is because either the spin-up
interchanges are odd while the spin-down ones are even, or vice versa. Hence the overall
phase change eiJ 1θ ′ must equal eiπ(2n

′+1), wheren′ is any integer. Denoting theJ -value as
JWXD we therefore obtain the condition

JWXD = 1

3
N

(
n′ + 1

2

)
. (42)

Again, this criterion forJWXD in independent ofm. These two criteria, taken together,
therefore guarantee that the partially spin-polarizedN -electron wavefunction has the
correct permutational symmetry under the subset of all permutations ofN electrons which
correspond to ring rotations, both for the perfect crystal (WX)and for the crystal plus defect
(WXD). Combining the two conditions for integer values ofJWX andJWXD, we hence see
that the WX and WXD have the following commonJ -values:

Jm = 1

6
N(N − 1)(2n+ 1) (43)

wheren is any integer. Converting theseJm-values into filling factors yields

ν = 3

2n+ 1
. (44)

This coincides with the third series of FQHE fractions, i.e.3
5, 3

7, etc, and predicts the
corresponding ground states to be partially spin polarized in the ratio of spin-up to spin-
down of 2:1 (or vice versa) in the absence of Zeeman energy. We note that there is an
alternative system that also yields the filling factor seriesν = 3/(2n+ 1). In particular,
this fraction emerges from considering a fully spin-polarized system, but now considering
rotation of two rings simultaneously. These two states withN+:N− = 2:1 andN− = 0,
respectively, probably compete to become the ground state depending on the value of the
Zeeman energy (and hence magnetic field). Interestingly, finite-size studies have shown
that theν = 3

5 state is indeed partially polarized forB < 15 T in the ratioN+:N− = 2:1,
but fully polarized forB > 15 T (see p 160 of reference [3]).

The above arguments can be extended straightforwardly to considerN+ = (p − 1)N−,
whereN = N+ + N− andp is any integer. In this case, the corresponding filling fraction
becomesν = p/(2n+ 1). We now focus on the filling factorν = 1 (IQHE). We have
already shown that this state emerges from the two following series:ν = 1/(2n+ 1) for
n = 0 in a fully spin-polarized system, orν = 3/(2n+ 1) for n = 1 in a partially spin-
polarized system. In fact, for a given spin polarizationN+ = (p − 1)N− with p odd,
the factorν = 1 will always arise, i.e. by choosingn = (p − 1)/2. It is reasonable to
expect these states to compete to become the ground state. This is consistent with recent
findings that a gap exists atν = 1 (IQHE) even in theabsenceof Zeeman splitting. The
possible coexistence of a manifold of partially spin-polarized states is also consistent with
the idea of macroscopic spin textures nearν = 1; in particular, taking a linear combination
of partially spin-polarized states enables the construction of localized ‘wave-packets’ of
spin to be carried out—we conjecture that the resulting spin textures may be related to
skyrmions.
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We note that the above filling factors emerged from requiring that the WX and WXD
had a common angular momentum value. The defect was considered to be an interstitial
electron. It turns out that, as far as the commonJm-values are concerned, we could also
have considered the defect to be a vacancy. The product(N − 1)(N − 2) would have
appeared throughout this section instead ofN(N − 1); in the large-N limit, both products
yield ∼N2 and hence the same filling factors. Hence atJ = Jm, the WX can coexist with
a WXD where the defect is either an interstitial electron or a vacancy. As noted earlier,
however, such vacancies do have a higher energy, and hence are less likely to occur at finite
temperatures.

3.4. Analytic calculation of FQHE energy gaps

In this section we will give an analytic calculation for the energy gaps associated with the
FQHE and IQHE states, i.e. forJ = Jm. The calculation is approximate since it relies on
the various approximations made in section 2.3. However, our goal is to find whether the
gaps predicted by our model are in fact consistent with the observed FQHE gaps, and also
to identify trends in the energy gaps with filling fraction, magnetic field, etc.

In section 2.3, we obtained an approximate expression for the relative energyErel (see
equation (27)). This energy depends onEα and Eθ . In section 3, we argued that the
important criterion characterizing the magic-numberJ -values was that the crystal (WX)
and defect (WXD) can both have the sameJ -value, given byJ = Jm; this leads to a
large delocalization energy due to increased WX–WXD tunnelling in�′ space. In the
language of single-particle tight-binding theory, the resulting energy gap between states
with J = Jm and J 6= Jm arises from the hybridization of theG(�′) solutions peaked
around, for example,�′0 and�′0;a at J = Jm. This hybridization hence yields a lowErel

because of the corresponding delocalization ofG(�′) at J = Jm, i.e. a reduction in zero-
point energy. Here we will obtain an analytic expression for this energy using a simple
model for the effect of delocalization, and show that the resulting gaps are consistent with
experimental findings.

As pointed out earlier, a state of a given negativeJ will have an energy minimum at
a finite magnetic fieldωc. As ωc increases, the value ofJ at which the energyErel(J )

has a minimum will increase. We will calculate the energy difference between a state with
J = Jm and competing low-energy states withJ given by Jm± = Jm ± δ at a givenωc,
whereδ � Jm. The lowest-energy state withJ = Jm is given by equation (27) withn = 0:

Erel(Jm) = h̄ω0(B)

[(
[N − 2]2+ J 2

m +
2m∗β
h̄2 V (�′0)

+ 2m∗

h̄2 [Eθ(Jm)+ Eα(Jm)]
)1/2

+ 1

]
− Jm h̄ωc

2
(45)

while that withJ = Jm± is given by

Erel(Jm±) = h̄ω0(B)

[(
[N − 2]2+ [Jm ± δ]2

+ 2m∗β
h̄2 V (�′0)+

2m∗

h̄2 [Eθ(Jm±)+ Eα(Jm±)]
)1/2

+ 1

]
− [Jm ± δ] h̄ωc

2
.

(46)

As discussed in section 2.1, the angular momentum is negative for low-lying energy states;
hence we have included the minus sign directly into these expressions, i.e.Jm and Jm±
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are positive numbers. Consider the state withJ = Jm. This state can coexist as both a
crystal (WX) and a crystal plus defect (WXD), in contrast to the stateJm±. The transition
WX→WXD will involve a distortion of the�′ coordinates. This distortion in�′ space
corresponds to a spreading or ‘delocalization’ of the functionG(�′) along these directions.
There is therefore a reduction in ‘localization’ energy going from a state withJ 6= Jm
(i.e. WX and WXD cannot coexist) to a state withJ = Jm (i.e. WX and WXD can coexist).
We will hence write

Eθ(Jm)+ Eα(Jm)+ βV (�′0) = E0 (47)

while

Eθ(Jm±)+ Eα(Jm±)+ βV (�′0) = E0+ 1̃ (48)

where1̃ represents the increased localization energy of stateJm± as compared toJm. Note
that the potential energy minimumβV (�′0) is a constant term throughout. In the appendix,
we show that typically1̃ ∼ N2, while E0 ∼ N3. Hence in the limit ofN � 1, we
haveE0 � 1̃. We also recall from section 3 thatJm ∼ N2. It follows by expanding out
equations (45) and (46) in the limitN � 1 that

1Eν ≡ Erel(Jm±)− Erel(Jm) ≈ h̄ω0(B)

[
m∗1̃/h̄2± Jmδ

[J 2
m + 2m∗E0/h̄

2]1/2

]
∓ δ h̄ωc

2
. (49)

We are interested in the large-N limit, since our goal is to calculate the FQHE gaps; hence
we will choose the confinementω0� ωc, which yieldsω0(B) ∼ ωc/2. Let us first consider
the filling factorν = 1

3, and henceJm = 3N(N − 1)/2. Substituting into equation (49), we
obtain the approximate expression for the energy gap:

1E1/3 ∼ 1

3

m∗1̃
N2h̄2 h̄ωc. (50)

There are several points to note about this expression for the energy gap atν = 1
3.

(i) Given that 1̃ ∼ N2 for large N , the expression isindependentof the electron
numberN . It is also independent of the strength of the parabolic potentialω0. For a given
ωc corresponding to the filling factorν = 1

3, we can therefore take the thermodynamic limit
N → ∞ and yet still maintain afixed average electron density by choosing appropriately
small values ofω0. Our expression for the energy gap at filling factorν = 1

3, which
was derived in terms ofJ -values for a fixed-N system, therefore also holds for an infinite
two-dimensional electron gas of fixed density.

(ii) The expression for the energy gap does not exhibit a direct dependence on the value
of the electron–electron interactionβ. We do emphasize, however, that throughout most of
this paper we haveassumedthat β is large enough for us to be able to neglect tunnelling
between SEMs. Hence we can only conclude that the absolute value ofβ does not directly
affect the energy gap1E for sufficiently largeβ. This is consistent with experimental
findings that the gap can be remarkably sample independent [3]. Below we will mention
how a weak dependence onβ will arise if one considers smaller values ofβ.

(iii) The energy gap appears to be approximatelylinear in the magnetic field. Most
previous theoretical studies conclude that the dependence resemblesB1/2. As we will show
below, the linear dependence is in reasonable agreement with experimental data, particularly
at lower fields. However, we will later discuss how a weaker, non-linear dependence, i.e.Bx

wherex < 1, can eventually arise at largerB in our model.
(iv) The energy gap does not depend onδ to first order in(δ/Jm). This independence

of δ is important since it implies that the energy gap exists between stateJm andall other
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states withJ in the vicinity of Jm. We know from the discussion at the end of section 2.1
that, over a given range of magnetic field, the states which compete to become the ground
state will be those of similarJ . Hence we expect the energy gap arising to exist over a
small but finite range of magnetic field, as observed experimentally.

(v) The expression for the gap1E can be made applicable to situations where the lowest-
energy excitation involves spin flips, by adding1Espin, where1Espin is the difference in
total spin energy between the excited state and theν = 1

3 spin-polarized ground state. We
are interested in the lowest-energy excitations with1Espin = 0; 1Espin > 0 for the fully
spin-polarized initial state atν = 1

3. For other fractions, the term̃1 will have an indirect
dependence on the spin configuration since, for a mixed spin system, the�′ space is really
coupled to the spinor space by the antisymmetry condition, and henceG(�′) is actually a
two-dimensional vector. A detailed discussion of spin-reversed excited states will be given
elsewhere.

(vi) Given the discussion in (v), together with the fact that1̃ has a weak but finite
dependence onJm (see later), we can conclude the value of1̃ will generally be different
for different fractions. Gaps at other fractions in theν = p/3 series are discussed below.

We will now attempt to derive an approximate analytic expression for1̃. Consider
the N -electron system atJ = Jm. As discussed in section 3, the system can exist as
both a crystal (WX) and a crystal plus defect (WXD), in contrast to the stateJm±. We
will argue in what follows that the transition WX→WXD involves a significant fractional
distortion ofθ -coordinates. This distortion along the{θ[j ]}-axes in�′ space corresponds to
a spreading or ‘delocalization’ of the functionG(�′) along these directions, thereby giving
rise to a finite1̃. In sections 2 and 3, we argued that the low-energy SIMs near a given
SEM consisted of a single-electron defect placed at an interstitial site within the hexagonal
crystal. As noted at the end of section 3, the defect could also be a vacancy, although
the corresponding SIM would have a higher energy. Consider a defect placed in ringm

which containsNm particles withNm � 1, and let the defect be sited betweenj andj + 1
(cf. figure 5). Classically, the system moves to a nearby SIM in�′ space (cf. figure 2).
In particular, the defect will cause a distortion of the coordinates of particlej . In order to
calculate the maximum possible distortion (and hence delocalization available as a result
of the hybridization between the SEM and SIM), we will consider the particular SIM in
which only particlej moves to accommodate the defect. In principle, both theαj - and
θ[j ] -coordinates will be modified, thereby ‘sharing’ the effect of the distortion. However,
with the defect placed betweenj and j + 1 in ring m, the distortion of particlej will
mainly be along theθ[j ] -direction. The idea that the most important effect of the defect is
the distortion of theθ -coordinates is consistent with the following considerations. Consider
any particlej ′ near to the defect with coordinatesθ[j ′] and αj ′ . Let the nearby defect
cause a distortion ofa in all directions. Hence the new coordinates of the particlej ′ are
approximatelyαj ′ + a andθ[j ′] + a/αj ′ . The relative distortion caused by the nearby defect
is hence1αj ′/αj ′ ∼ a/αj ′ , while1θ[j ′]/θ[j ′] ∼ a/(αj ′θ[j ′]). ForN � j ′, αj ′ changes slowly
with j ′, and is unchanged ifj ′ lies in ringm. However,θ[j ′] ranges from 0 to 2π within
ring m, and hence the fractional change1θ[j ′] can be significant.

We will therefore consider̃1 as arising as a result of the difference inEθ for Jm as
compared toJm±. The loss of ‘localization’ energy of the stateJm as compared toJm± can
be significant along the{θ[j ]} directions, i.e.Eθ can differ appreciably depending on whether
the functionG(�′) is localized (i.e.J = Jm±) or not (J = Jm). Consider equation (26) for
the ‘energy’ej associated with a particlej in ring m whereJ 6= Jm (i.e. WX and WXD
cannot coexist). The equation resembles a one-dimensional Schrödinger equation inθ[j ] for
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a massαj0 moving in a potentialwj(θ[j ] − θ[j0]). The functionwj will have a minimum
at θ[j ] = θ[j0], whereas there are maxima atθ[j ] = θ[j0] ± 2π/Nm as particlej approaches
particlej ± 1. ForN = 3, recall figure 3, where moving along they-axis (θ -axis) at fixed
α = α0 (i.e. x = 0) produced a minimum aty = 0 and maxima aty = ±π/2. We can
approximateej using a simple one-dimensional particle-in-a-box model: we will assume
thatwj is a flat-bottomed potential with infinite walls atθ[j ] = θ[j0]±2π/Nm. The width of
the box is therefore given byaj = 4π/Nm. The energye(J )j is hence approximately given
by

e
(J )
j ∼

h̄2π2N2
m

2m∗α2
j0[4π ]2

. (51)

Note that the width of the wavefunctiongj , and hence the localization ofG(�′) alongθ[j ] ,
is characterized byaj . This expression (equation (51)) fore(J )j implicitly assumes that the
electron–electron interactionβ is large; for smaller values ofβ, the particle-in-a-box energy
should pick up a weak dependence onβ. Throughout this paper, however, we will use the
approximate analytic form given in equation (51). AtJ = Jm, there is distortion ofG(�′),
since WX and WXD can coexist. The defect can occupy any interstitial site in the crystal;
each defect position produces a distinct SIM. There exists a SIM (e.g.�′0;j ) in which the
defect is placed next to particlej , say between particlesj andj+1 as used earlier. We can
see that there is one such SIM associated with eachθ[j ] -coordinate. If, as discussed above,
we consider the main distortion as occurring on theθ[j ] -coordinate of particlej , then the
associated SIM lies on theθ[j ] -axis. In this case the coexistence of the SEM�′0 and the
SIM �′0;j causes an increase in the effective box width,aj → aj + δaj . The energy along
the θ[j ] -direction is now given by

e
(Jm)
j ∼ e(J )j +

∂e
(J )
j

∂aj
δaj ∼ e(J )j

[
1− 2

δaj

aj

]
. (52)

Although there are many such SIMs associated with each SEM, we know that the defects
have a low density at the temperatures of interest. The system also requires a large time
to tunnel between these SIMs, since each SIM describes a different defect position in
the crystal; diffusion of the defect between sites will be slow at low temperatures. It is
reasonable therefore to suppose that each SEM hybridizes with just one of these SIMs at
any time. The average loss of localization energy of stateJm as a result of distortion due to
a nearby SIM is therefore obtained by averaging over all(N − 2) θ[j ] -coordinates. Hence,
using equation (52),

1̃ ∼ 1

N − 2

∑
j

2

[
δaj

aj

]
e
(J )
j ∼ 2

[
δa

a

]
ē (53)

wherex̄ represents an average of the quantityx over all (N − 2) of the θ[j ] -coordinates.
We could also try to obtain expressions for1E at other fractions. Considerν = 1

5.
Equation (50) now has the factor1

3 replaced by1
5. Assuming as a crude approximation that

the values of1̃ are the same, we obtain the result that1E1/5:1E1/3 ∼ 0.6 for samples
at a given magnetic field. The literature tends to put this ratio at about 0.3–0.4 [27, 28].
One could also try to evaluate1E for other fractions where the ground stateJm and/or
the excited statesJm± are thought to have spin-reversed electrons. Such a calculation
needs a more careful estimation of1̃, as discussed earlier. Here we will just provide a
rough estimate by considering, as before, excitations which do not change the total spin
component (i.e.1Espin = 0). We will chooseν = 2

3 in order to compare with the results
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for ν = 1
3. There are two effects of consideringν = 2

3 instead ofν = 1
3 when re-deriving

the expressions obtained in this section. The prefactor in equation (50) increases by a
factor of 2, while δaj/aj decreases by a factor of 2. This decrease inδaj/aj arises as
follows. Recall that like spins in the spin-unpolarized case are separated by twice the angle
of the spin-polarized case. The ‘unit-cell’ size in�′ space is determined by the separation
between neighbouring SEMs, and is therefore twice as large for the unpolarized case. The
effective box size must therefore also be twice as large, i.e. the effectiveaj -value is now
8π/Nm instead of 4π/Nm. Hence the final result is that1E2/3 ∼ 1E1/3. Although we
do not attach too much importance to this result because of the complications of spin, it
is interesting to note that experimentally the gaps forν = 1

3 and ν = 2
3 are found to be

similar [3, 27, 28], as will be shown below. We note that allowing for spin-flip excitations
at ν = 2

3 may reduce the overall gap at lowB, since1Espin can be negative if the ground
state is not fully spin polarized. Hence the total gap may be negligible forν = 2

3 at lowB.
This feature is also seen experimentally. The same argument concerning effective box size
should also be approximately true for the other partially spin-polarized fractions in thep/3
series. Considerν = p/3. The prefactor in equation (50) increases by a factorp, while the
effective box size also increases by the same factor. The net effect is that the expression
for the gap is similar for all fractionsp/3, wherep = 1, 2, 4, 5, etc. Hence the energy gaps
for thep/3 fractions measured across a range of samples should all fall on approximately
the same curve as a function of magnetic field.

Equation (53) presented an analytic expression for1̃ which, to the level of
approximation employed, did not depend on the ground-stateJm-value. Examination of the
more accurate versions of the hyperangular equation presented in section 2.3 suggests that1̃

should actually have a weak but finite dependence onJm (recall, for example, equation (23)
or (24)). In theN = 3 study in section 2.2, we found that increasingJ did indeed increase
the localization ofG(�′) around the classical minima. For largeN , as discussed in section
2.3, the dependence onJm should be weaker; however, the resulting hybridization between a
given SEM (i.e. WX) and nearest-neighbour SIMs (i.e. WXD) should also decrease slightly
asJm increases. Decreasing hybridization will reduce the value of1̃ asJm increases. It is
interesting to analyse the effect of this reduction in1̃ for the separate situations of (a) a
given sample over a range ofν-values, and (b) different samples at a given fixedν. In
case (a), the number of electronsN is fixed. As the value ofJm increases, the value of
ωc at which thisJm-value represents the ground state must also increase. If1̃ decreases
asJm increases, theñ1 must also decrease with increasingωc. This reduction in1̃ asωc
increases, if sufficiently large, will make1E → 0; we suggest that this may be related to
the predicted formation of a Wigner solid (i.e. gapless excitations) at very high magnetic
fields. In case (b), fixedν means that increasingJm requires an increase inN (recall that
Jm = N(N − 1)/(2ν)). If 1̃ decreases asJm increases, theñ1 must also decrease asN
increases. However, a fixed value ofν means that increasingN requires an increase in
magnetic field. Hencẽ1 decreases asωc increases. As mentioned earlier, this will tend to
weaken the linear magnetic field dependence of the theoretical gaps at fixedν to ωxc with
0 < x < 1. Such a sub-linear dependence is consistent with recent experimental data at
high fields [29]. In the estimates of the gap discussed below, however, we take as a first
approximation the form of̃1 presented in equation (53). Consequently the calculated gaps
for a givenν always increase linearly with magnetic field.

We now proceed to discuss appropriate values of[δa/a], and hence calculate the gaps.
The precise value for[δa/a] will depend on the details of the crystal plus defect system
(WXD). Here we will suggest reasonable lower and upper estimates, and argue that the
particular value to be used will depend on the degree of disorder in the experimental
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samples. In particular, we will argue that the lower estimate is appropriate for disordered
(i.e. lower-mobility) samples, while the upper estimate is appropriate for pure (i.e. higher-
mobility) samples.

Figure 7. The theoretical lower estimate (straight line) for FQHE energy gaps obtained from
the present theory as compared to experimental results over a range of lower-mobility GaAs
heterostructure samples. (This figure was adapted from the data of Boebingeret al, references
[27] and [3].) Experimental data:ν = 1

3 (black points),ν = 2
3 (white points). As discussed in

the text, the theoretical gaps are the same forν = 1
3 andν = 2

3 to a first approximation.

First we consider the lower estimate for[δa/a]. Fisheret al found that the maximum
distortion for a vacancy defect was about 12%, but that the value for the interstitial defect
was ‘considerably larger’ [26]. If the sample contains a significant impurity concentration,
it is likely that interstitial electrons will have difficulty in diffusing through theN -electron
system. The functionG(�′) will therefore have a restricted delocalization for kinetic
reasons. In the absence of interstitial defects, the delocalization would be determined solely
by the vacancies. We will therefore take the value of 12% as a lower estimated bound for
[δa/a]. From the appendix, we have that

ē ∼ 27h̄2N2

16m∗π2

and hence

1̃ ∼ 0.4
h̄2N2

m∗π2
.

Substituting this into the expression for the energy gap, we obtain1E1/3 ∼ 0.014h̄ωc meV
and hence1E1/3 ∼ 0.16h̄ωc K. Given that 1 meV≡ 1.728B(T) (tesla) for GaAs, we
obtain1E1/3 ∼ 0.27B(T) degrees Kelvin. Hence atB = 20 T,1E1/3 ∼ 5.5 K. Figure 7
compares this lower estimated bound of the energy gap atν = 1

3 (and henceν = 2
3, as

explained above) with early experimental results obtained by Boebingeret al [27, 3] over a
range of relatively impure samples (i.e. significant impurity concentration). The agreement
is surprisingly good; however, we emphasize that our calculation is obviously fairly crude.
Apart from improving the expression for1E1/3 given in equation (50), one could do a better
job in calculating the localization energỹ1 from equation (53). Such improvements would
almost certainly render the calculation of energy gaps within the present model numerical,
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although such calculations would be more straightforward than the original alternative of an
N -electron diagonalization. Various numerical improvements will be presented in a future
publication; the goal of the present paper is to pursue a purely analytical theory.

Figure 8. Theoretical upper (dashed line) and lower (solid line—the same as in figure 7)
estimates for FQHE energy gaps obtained from the present theory as compared to experimental
results over a range of higher-mobility GaAs heterostructure samples. The data were taken from
reference [28] of Mallettet al (squares) and reference [30] of Willettet al (solid circles with
error bars). The experimental data contain values for the fractionsν = p/3, wherep = 1, 2, 4, 5.
As discussed in the text, the theoretical gaps are independent ofp to a first approximation.

Now we turn to an upper estimate for[δa/a]. We assume that the sample is pure, and
hence that there is no kinetic reason for ignoring interstitial defects. We first recall our
physical picture of the topology of the interstitial defect, stated earlier in this section. We
consider a ringm containingNm electrons, including particlesj −1, j , andj +1 (cf. figure
5). The angle between particlej andj +1 is 2π/Nm, and the angle between particlej −1
andj +1 is 4π/Nm. We let the defect lie in the ring between particlesj andj +1. We are
looking for an upper estimate on the value of[δa/a]; hence we will assume that the only
particle which moves to accommodate the extra electron is particlej . As before, the angle
betweenj − 1 andj + 1 is still 4π/Nm, but now there aretwo particles (j and the defect)
within this angular range. In an equilibrium state (i.e. a SIM), the three angles between
j − 1 andj , j and the defect, and the defect andj + 1 are all equal to 4π/(3Nm). The
distortion of the effective box size for particlej will be determined by the angle betweenj
andj + 1. Hence an estimate of the average distortion[δa/a] is (2π/Nm)( 4

3 − 1) divided
by 2π/Nm, which gives1

3. Our upper estimated value of[δa/a] is therefore 0.33. Figure 8
compares both this upper bound and the lower bound obtained earlier to experimental data
obtained by the Oxford and AT&T groups for a range of relatively pure, high-mobility
samples [28, 30]. The experimental values lie between the two bounds. This consistency
between the present theoretical results and experiment lends support to our interpretation of
the effect of sample purity.



5918 N F Johnson and L Quiroga

4. Conclusions

A microscopic theory describing a confinedN -electron gas in two dimensions, subject to an
external magnetic field, was presented. The number of electronsN and the strength of the
electron–electron interaction can be arbitrarily large. For any value of the magnetic fieldB,
the correlatedN -electron states were shown to be determined by the solution to a universal
effective problem: this problem resembles that of a fictitious particle moving in a multi-
dimensional space, without a magnetic field, occupied by potential minima corresponding
to the classicalN -electron equilibrium configurations.

A possible connection with the fractional (FQHE) and integer (IQHE) quantum Hall
effects was subsequently proposed. In particular, it was shown that low-energy minima can
arise in the large-N limit at filling factors ν = p/(2n+ 1), wherep andn are any positive
integers. The energy gaps calculated analytically atν = p/3 were found to be consistent
with experimental data as a function of magnetic field, over a range of samples. Various
other known features of FQHE and IQHE states were found to emerge from the present
theory.

While it is obviously extremely difficult to calculate many-particle energy gaps, etc,
accurately using an analytic approach, we hope that the general qualitative trends and orders
of magnitude provided by the model will be useful in the understanding of the fascinating
but complex field of highly correlatedN -electron systems. We also hope that the model
may begin to shed some light on the connection between the two limits of few-electron
correlated states in quantum dots, and the infinite two-dimensional electron gas.
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Appendix

First we derive an approximate expression forē and hence1̃. The exact hyperangular
identity

∑N
j=2[Xj/r]2 = 1 implies that

∑
α2
j ∼ 1. The moment of inertiaI of the (N −1)-

particle system in� space, treated as a rigid body, is therefore approximately justm∗. For
largeN , the density of particles will be approximately uniform: the moment of inertia for
such a uniform disk is just12(N −1)m∗R2 ∼ 1

2Nm
∗R2, whereR represents the disk radius,

and (N − 1)m∗ is the total mass. HenceR2 ∼ 2/N , the average density of particles is
(N − 1)/πR2 ∼ N2/2π , and the average particle–particle spacing is∼ [2π ]1/2/N . Now
consider the sum over energiese(J )j from equation (51):

∑
e
(J )
j ∼

∑ h̄2π2[Nm]2

2m∗α2
j0[4π ]2

. (A1)

The quantityαj0 for particle j in ring m is approximatelym times the average particle–
particle separation: i.e.αj0 ∼ m[2π ]1/2/N . Replacing the sum overj by a sum over the
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ringsm, and using the approximate result that there are 6m particles in ringm, yields∑
j

e
(J )
j ∼

∑
m

[6m]3 h̄2N2

64m∗πm2
∼ 27h̄2N2

8m∗π

mmax∑
1

m (A2)

wheremmax is the maximum ring number.mmax is given approximately by the disk radius
R divided by the particle–particle separation. Hencem2

max ∼ N/π . For largemmax ,∑mmax
1 m ∼ 1

2m
2
max . Hence∑
e
(J )
j ∼

27h̄2N3

16m∗π2
. (A3)

We require the averagee(J )j -value, ē, with the average taken over allj . There areN − 2
suchj -coordinates, and hence for largeN we have

ē ∼ 27h̄2N2

16m∗π2

as claimed in section 4. Given that

1̃ ∼ 2

[
δa

a

]
ē (A4)

we obtain

1̃ ∼
[
δa

a

]
27h̄2N2

8m∗π2
(A5)

and hence1̃ ∼ N2 as claimed.
Second, we investigate the generalN -dependence ofE0. Following equations (47)

and (48), we assume thatE0 is dominated by the classical potential energy at the SEM
�′ ≡ �′0, i.e.E0 ∼ βV (�′0). This is consistent with our assumption throughout the paper
of considering configurations close to the classical minima. Hence

E0 ∼ β
∑
j<j ′

1

|αj0eiθj0 − αj ′0eiθj ′0|2 . (A6)

Replacing the denominator byα2 yields

E0 ∼ β 1

α2

∑
j<j ′

1

and henceE0 ∼ βN 1
2(N − 1)(N − 2). For largeN , E0 ∼ βN3/2, and henceE0 ∼ N3

as claimed. We note that while this derivation is crude, the final expression forE0 is not
actually used in the calculation of the energy gaps. The only result used is the conclusion
thatE0� 1̃ for largeN .
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